Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T18:51:46.809Z Has data issue: false hasContentIssue false

Magnetic massive stars from stellar mergers

Published online by Cambridge University Press:  29 August 2024

Fabian R. N. Schneider*
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Zentrum für Astronomie der Universität Heidelberg, Astronomisches Rechen-Institut, Mönchhofstr. 12-14, 69120 Heidelberg, Germany
Sebastian T. Ohlmann*
Affiliation:
Max Planck Computing and Data Facility, Gießenbachstr. 2, 85748 Garching, Germany
Philipp Podsiadlowski*
Affiliation:
University of Oxford, St Edmund Hall, Oxford, OX1 4AR, United Kingdom
Friedrich K. Röpke*
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg, Germany
Steven A. Balbus*
Affiliation:
Department of Physics, University of Oxford, Keble Rd, Oxford OX1 3RH, United Kingdom
Rüdiger Pakmor*
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
Volker Springel*
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first magnetic field in a star other than the Sun was detected in 1947 in the star 78 Vir. Today, we know that about 10% of these intermediate-mass and high-mass stars have strong, large-scale surface magnetic fields whose origin has remained a mystery till today. It has been suggested that merging of main-sequence and pre-main-sequence stars could produce such strong fields. The massive star τ Sco is a well-known member of the group of magnetic stars and is a blue straggler given its apparently young age compared to that of other members of the Upper Scorpius association. Here, we present 3D magnetohydrodynamic simulations of the coalescence of two massive main-sequence stars and 1D stellar evolution computations of the subsequent evolution of the merger product that can explain τ Sco’s magnetic field, apparent youth and other observed characteristics. We argue that field amplification in stellar mergers is a general mechanism to form strongly-magnetised massive stars. Such stars are promising progenitors of magnetars, which may give rise to some of the enigmatic fast radio bursts, and their supernova explosions may be affected by the strong magnetic fields.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Babcock, H. W., 1947, Publications of the Astronomical Society of the Pacific, 59, 112 CrossRefGoogle Scholar
Carrier, F., North, P., Udry, S., Babel, J., 2002, A&A, 394, 151 Google Scholar
Diehl, R., et al., 2006, Nature, 439, 45 CrossRefGoogle Scholar
Donati, J.-F., Landstreet, J. D., 2009, ARA&A, 47, 333 CrossRefGoogle Scholar
Ferrario, L., Wickramasinghe, D. T., 2005, MNRAS, 356, 615 CrossRefGoogle Scholar
Ferrario, L., Wickramasinghe, D., 2008, MNRAS, 389, L66 Google Scholar
Ferrario, L., Pringle, J. E., Tout, C. A., Wickramasinghe, D. T., 2009, MNRAS, 400, L71 CrossRefGoogle Scholar
Grunhut, J. H., et al., 2017, MNRAS, 465, 2432 CrossRefGoogle Scholar
Hale, G. E., 1908, ApJ, 28, 315 Google Scholar
Keane, E. F., Kramer, M., 2008, MNRAS, 391, 2009 Google Scholar
Kochukhov, O., Bagnulo, S., 2006, A&A, 450, 763 CrossRefGoogle Scholar
Langer, N., 2012, ARA&A, 50, 107 CrossRefGoogle Scholar
Neiner, C., Mathis, S., Alecian, E., Emeriau, C., Grunhut, J., BinaMIcS t., MiMeS collaborations 2015, preprint, (arXiv:1502.00226)Google Scholar
Ohlmann, S. T., Röpke, F. K., Pakmor, R., Springel, V., Müller, E., 2016, MNRAS, 462, L121 Google Scholar
Ohlmann, S. T., Schneider, F. R. N., R175 öpke F. K., Podsiadlowski P., Pakmor R., Springel V., Balbus S., 2022, in prep.Google Scholar
Ondratschek, P. A., Röpke, F. K., Schneider, F. R. N., Fendt, C., Sand, C., Ohlmann, S. T., Pakmor, R., Springel, V., 2022, A&A, 660, L8 CrossRefGoogle Scholar
Pakmor, R., Springel, V., 2013, MNRAS, 432, 176 Google Scholar
Pakmor, R., Bauer, A., Springel, V., 2011, MNRAS, 418, 1392 Google Scholar
Paxton, B., Bildsten, L., Dotter, A., Herwig, F., Lesaffre, P., Timmes, F., 2011, ApJS, 192, 3 Google Scholar
Paxton, B., et al., 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Paxton, B., et al., 2015, ApJS, 220, 15 CrossRefGoogle Scholar
Paxton, B., et al., 2018, ApJS, 234, 34 Google Scholar
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., De Zeeuw, D. L., 1999, Journal of Computational Physics, 154, 284 CrossRefGoogle Scholar
Price, D. J., Rosswog, S., 2006, Science, 312, 719 Google Scholar
Schneider, F. R. N., Podsiadlowski, P., Langer, N., Castro, N., Fossati, L., 2016, MNRAS, 457, 2355 Google Scholar
Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., Röpke, F. K., Balbus, S. A., Pakmor, R., Springel, V., 2019, Nature, 574, 211 Google Scholar
Schneider, F. R. N., Ohlmann, S. T., Podsiadlowski, P., Röpke, F. K., Balbus, S. A., Pakmor, R., 2020, MNRAS, 495, 2796 Google Scholar
Schöller, M., et al., 2017, A&A, 599, A66 Google Scholar
Shultz, M., Wade, G. A., Alecian, E., BinaMIcS Collaboration 2015, MNRAS, 454, L1Google Scholar
Springel, V., 2010, MNRAS, 401, 791 Google Scholar
Varma, V., Mueller, B., Schneider, F. R. N., 2022, arXiv e-prints, p. arXiv:2204.11009Google Scholar
Wickramasinghe, D. T., Tout, C. A., Ferrario, L., 2014, MNRAS, 437, 675 Google Scholar
Zhu, C., Pakmor, R., van Kerkwijk, M. H., Chang, P., 2015, ApJL, 806, L1 Google Scholar