Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T20:42:57.599Z Has data issue: false hasContentIssue false

Magnetic helicity as a probe of magnetic flux-tube dynamics in the solar interior

Published online by Cambridge University Press:  18 July 2013

Takashi Sakurai
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan email: [email protected]
Yu Gao
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China
Kirill Kuzanyan
Affiliation:
National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan email: [email protected] National Astronomical Observatories, Chinese Academy of Sciences, Beijing, China IZMIRAN, Russian Acacemy of Science, Moscow, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic helicity (volume integral of the product of the magnetic field vector B and the vector potential A), or its proxy, the current helicity at the surface (surface integral of B·J or BzJz), is an important quantity which characterizes the helical nature of solar magnetic fields. The current helicity on the Sun shows a tendency, though with large dispersion, that it is positive in the southern hemisphere and negative in the northern hemisphere (the helicity sign rule). However, there are indications that the helicity sign rule may be reversed at activity minimum periods. We will discuss the significance of this property by focusing on the statistical distributions of helicity whether its dispersion follows Gaussian distribution or not.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Ai, G. X. & Hu, Y. F. 1986, Acta Astron. Sinica, 27, 173 Google Scholar
Bao, S. D., Ai, G. X., & Zhang, H. Q. 2000, JAA, 21, 303 Google Scholar
Berger, M. A. 1999, in: Brown, M. R., Canfield, R. C., & Pevtsov, A. A. (eds.), Magnetic Helicity in Space and Laboratory Plasmas, AGU Geophys. Monogr. 111, p. 1Google Scholar
Choudhuri, A. R., Chatterjee, P., & Nandy, D. 2004, ApJL, 615, L57 Google Scholar
Hagino, M. & Sakurai, T. 2004, PASJ, 56, 831 Google Scholar
Hagino, M. & Sakurai, T. 2005, PASJ, 57, 481 Google Scholar
Longcope, D. W., Fisher, G. H., & Pevtsov, A. A. 1998, ApJ, 507, 417 Google Scholar
Pevtsov, A. A. & Canfield, R. C. 1999, in: Brown, M. R., Canfield, R. C., & Pevtsov, A. A. (eds.), Magnetic Helicity in Space and Laboratory Plasmas, AGU Geophys. Monogr. 111, p. 103Google Scholar
Pevtsov, A. A. & Latushko, S. M. 2000, ApJ, 528, 999 Google Scholar
Pevtsov, A. A. 2002, in: Martens, P. C. H. & Cauffman, D. P. (eds.), Multiple Wavelength Observations of Coronal Structures and Dynamnics, COSPAR Colloq. Ser. 13 (Amsterdam: Elsevier Science), p. 125 Google Scholar
Pevtsov, A. A., Canfield, R. C., Sakurai, T., & Hagino, M. 2008, ApJ, 677, 719 Google Scholar
Seehafer, N. 1990, Solar Phys., 125, 219 Google Scholar
Tiwari, S. K., Venkatakrishnan, P., Gosain, S., & Joshi, J. 2011, ApJ, 700, 199 Google Scholar
Xu, H., Gao, Y., Zhang, H., Sakurai, T., Hagino, M., Sokoloff, D., & Pevtsov, A. A. 2012, PASJ, 64, 54 Google Scholar
Zhang, H., Sakurai, T., Pevtsov, A., Gao, Y., Xu, H., Sokoloff, D. D., & Kuzanyan, K. 2010, MNRAS, 402, L30 Google Scholar