Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-24T06:31:18.697Z Has data issue: false hasContentIssue false

Magnetic fields of weak line T-Tauri stars

Published online by Cambridge University Press:  12 September 2017

Colin A. Hill
Affiliation:
Université de Toulouse / CNRS-INSU, IRAP / UMR 5277, F-31400, Toulouse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

T-Tauri stars (TTS) are late-type pre-main-sequence (PMS) stars that are gravitationally contracting towards the MS. Those that possess a massive accretion disc are known as classical T-Tauri stars (cTTSs), and those that have exhausted the gas in their inner discs are known as weak-line T-Tauri stars (wTTSs). Magnetic fields largely dictate the angular momentum evolution of TTS and can affect the formation and migration of planets. Thus, characterizing their magnetic fields is critical for testing and developing stellar dynamo models, and trialling scenarios currently invoked to explain low-mass star and planet formation. The MaTYSSE programme (Magnetic Topologies of Young Stars and the Survival of close-in Exoplanets) aims to determine the magnetic topologies of ~30 wTTSs and monitor the long-term topology variability of ~5 cTTSs. We present several wTTSs that have been magnetically mapped thus far (using Zeeman Doppler Imaging), where we find a much wider range of field topologies compared to cTTSs and MS dwarfs with similar internal structures.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Aarnio, A. N., Matt, S. P., & Stassun, K. G., 2012, ApJ, 760, 9 Google Scholar
André, P., Basu, S., & Inutsuka, S., 2009, The formation and evolution of pre-stellar cores. Cambridge University Press, p. 254Google Scholar
Baruteau, C., et al., 2014, Protostars and Planets VI, pp 667–689Google Scholar
Bouvier, J., Alencar, S. H. P., Harries, T. J., Johns-Krull, C. M., & Romanova, M. M., 2007, Protostars and Planets V, pp 479–494Google Scholar
Cranmer, S. R., 2009, ApJ, 706, 824 Google Scholar
Cranmer, S. R. & Saar, S. H., 2011, ApJ, 741, 54 CrossRefGoogle Scholar
Davies, C. L., Gregory, S. G., & Greaves, J. S., 2014, MNRAS, 444, 1157 Google Scholar
Donati, J.-F. et al., 1997, MNRAS, 291, 658 Google Scholar
Donati, J.-F. et al., 2007, MNRAS, 380, 1297 Google Scholar
Donati, J.-F. et al., 2010, MNRAS, 402, 1426 Google Scholar
Donati, J.-F. et al., 2011, MNRAS, 412, 2454 Google Scholar
Donati, J.-F. et al., 2012, MNRAS, 425, 2948 Google Scholar
Donati, J.-F. et al., 2013, MNRAS, 436, 881 Google Scholar
Donati, J.-F. et al., 2014, MNRAS, 444, 3220 Google Scholar
Donati, J.-F. et al., 2015, MNRAS, 453, 3706 Google Scholar
Donati, J.-F. et al., 2016, Nature, 534, 662 Google Scholar
Gregory, S. G., Donati, J.-F., Morin, J., Hussain, G. A. J., Mayne, N. J., Hillenbrand, L. A., & Jardine, M., 2012, ApJ, 755, 97 Google Scholar
Hussain, G. A. J., et al., 2009, MNRAS, 398, 189 Google Scholar
Johns-Krull, C. M., Valenti, J. A., & Koresko, C., 1999, ApJ, 516, 900 Google Scholar
Matt, S P., 2012, ApJ, 745, 101 Google Scholar
Morin, J., et al., 2008, MNRAS, 390, 567 Google Scholar
Siess, L., et al., 2000, A&A, 358, 593 Google Scholar
Skelly, M. B., Unruh, Y. C., Collier Cameron, A., Barnes, J. R., Donati, J.-F., Lawson, W. A., & Carter, B. D., 2008, MNRAS, 385, 708 Google Scholar