Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T02:54:13.886Z Has data issue: false hasContentIssue false

Magnetic Fields in Stars: Origin and Impact

Published online by Cambridge University Press:  07 August 2014

N. Langer*
Affiliation:
Argelander-Institut für Astronomie, Universität Bonn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10% of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Belkacem, K., Samadi, R., Goupil, M. J., et al. 2009, Science, 324, 1540CrossRefGoogle Scholar
Berger, L., Koester, D., Napiwotzki, R., Reid, I. N., & Zuckerman, B. 2005, A&A, 444, 565Google Scholar
Braithwaite, J. 2006, A&A, 449, 451Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819Google Scholar
Brandenburg, A., Subramanian, K. 2005, Phys. Rep., 417, 1Google Scholar
Brott, I., de Mink, S. E., Cantiello, M., et al. 2011a, A&A, 530, A115Google Scholar
Brott, I., Evans, C. J., Hunter, I., et al. 2011b, A&A, 530, A116Google Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461Google Scholar
Cantiello, M., Langerm, N., Brott, I., et al. 2009, A&A, 499, 279Google Scholar
Carrier, F., North, P., Udry, S., & Babel, J. 2002, A&A, 394, 151Google Scholar
Charbonneau, P. & MacGregor, K. B. 2001, ApJ, 559, 1094CrossRefGoogle Scholar
Cranmer, S. R. & Owocki, S. P. 1996, ApJ, 462, 469CrossRefGoogle Scholar
de la Chevrotière, A., St-Louis, N., & Moffat, A. F. J. 2013, ApJ, 764, 171CrossRefGoogle Scholar
de Mink, S. E., Langer, N., Izzard, R. G., Sana, H. & de Koter, A. 2013, ApJ, 764, 166Google Scholar
de Mink, S. E., Sana, H., Langer, N., Izzard, R. G., & Schneider, F. R. N. 2014, ApJ, in pressGoogle Scholar
Donati, J.-F., Howarth, I. D., Jardine, M. M., et al. 2006, MNRAS, 370, 629CrossRefGoogle Scholar
Donati, J.-F., Jardine, M. M., Gregory, S. G., et al. 2007, MNRAS, 380, 1297Google Scholar
Donati, J.-F. & Landstreet, J. D. 2009, ARAA, 47, 333CrossRefGoogle Scholar
Dufton, P. L., Langer, N., Dunstall, P. R., et al. 2013, A&A, 550, A109Google Scholar
Duncan, R. C. & Thompson, C. 1992, ApJL, 392, L9Google Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350CrossRefGoogle Scholar
Hubrig, S., Schöller, M., & Yudin, R. V. 2004, A&A, 428, L1Google Scholar
Hunter, I., Brott, I., Lennon, D. J., et al. 2008, ApJL, 676, L29Google Scholar
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9Google Scholar
Evans, C. J., Taylor, W. D., Henault-Brunet, V., et al. 2011, A&A, 530, A108Google Scholar
Ferrario, L. & Wickramasinghe, D. 2006, MNRAS, 367, 1323Google Scholar
Ferrario, L., Pringle, J. E., Tout, C. A., & Wickramasinghe, D. T. 2009, MNRAS, 400, L71Google Scholar
Glebbeek, E., Gaburov, E., Portegies Zwart S., & Pols, O. R. 2013, MNRAS, 434, 3497Google Scholar
Grunhut, J. H. & Wade, G. A. 2012, ASPC, 465, 42Google Scholar
Grunhut, J. H., Wade, G. A., Leutenegger, M., et al. 2013, MNRAS, 428, 1686Google Scholar
Howarth, I. D. & Prinja, R. K. 1989, ApJS, 69, 527CrossRefGoogle Scholar
Korntreff, C., Kaczmarek, T., & Pfalzner, S. 2012, A&A, 543, A126Google Scholar
Langer, N. 2012, ARAA, 50, 107Google Scholar
MacDonald, J. & Mullan, D. J. 2004, MNRAS, 348, 702CrossRefGoogle Scholar
MacGregor, K. B. & Cassinelli, J P. 2003, ApJ, 586, 480CrossRefGoogle Scholar
Mestel, L. 2001, ASPC, 248, 3Google Scholar
Morel, T., Hubrig, S., & Briquet, M. 2008, A&A, 481, 453Google Scholar
Moss, D. 2001, ASPC, 248, 305Google Scholar
Mosser, B., Goupil, M. J., Belkacem, K., et al. 2012, A&A, 548, A10Google Scholar
Price, D. J. & Bate, M. R. 2007, MNRAS, 377, 77Google Scholar
Rüdiger, G., Kitchatinov, L. L., & Hollerbach, R. 2013, Magnetic Processes in Astrophysics, Wiley-VCH, WeinheimGoogle Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Suijs, M. P. L., Langer, N., Poelarends, A-J, Yoon, S-C, Heger, A., & Herwig, F. 2008, A&A, 481, L87Google Scholar
Sundqvist, J. O. & Owocki, S P. 2013, MNRAS, 428, 1837Google Scholar
Talon, S. & Charbonnel, C. 2008, A&A, 482, 597Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365Google Scholar
Tout, C. A., Wickramasinghe, D. T., Liebert, J., Ferrario, L., & Pringle, J. E. 2008, MNRAS, 387, 897Google Scholar
Tutukov, A. V. & Fedorova, A. V. 2010, A.Rep, 54, 156Google Scholar
Vink, J. 2008, Advances in Space Research, 41, 503Google Scholar
Wade, G. A., Bagnulo, S., Drouin, D., Landstreet, J. D., & Monin, D. 2007, MNRAS, 376, 1145CrossRefGoogle Scholar
Woosley, S. E. 2010, ApJL, 719, L204Google Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar
Zorec, J. & Royer, F. 2012, A&A, 537, A120Google Scholar