Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T16:54:29.289Z Has data issue: false hasContentIssue false

Magnetic field and prominences of the young, solar-like, ultra-rapid rotator AP 149

Published online by Cambridge University Press:  24 September 2020

Tianqi Cang
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, 31400 Toulouse, France
Pascal Petit
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, 31400 Toulouse, France
Colin Folsom
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, 31400 Toulouse, France
Jean-Francois Donati
Affiliation:
Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, CNES, 31400 Toulouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young solar analogs reaching the main sequence experience very strong magnetic activity, directly linked to their angular momentum loss through wind and mass ejections. We investigate here the surface and chromospheric activity of the ultra-rapid rotator AP 149 in the young open cluster alpha Persei. With a time-series of spectropolarimetric observations gathered over two nights with ESPaDOnS, we are able to reconstruct the surface distribution of brightness and magnetic field using the Zeeman-Doppler-Imaging (ZDI) method. Using the same data set, we also map the spatial distribution of prominences through tomography of H-alpha emission. We find that AP 149 shows a strong cool spot and magnetic field closed to the polar cap. This star is the first example of a solar-type star to have its magnetic field and prominences mapped together, which will help to explore the respective role of wind and prominences in the angular momentum evolution of the most active stars.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bouvier, J. 2013, EAS Publications Series, 143CrossRefGoogle Scholar
Collier Cameron, A. 1999, Solar and Stellar Activity: Similarities and Differences, 146Google Scholar
Donati, J.-F., Brown, S. F., Semel, M., et al. 1992, A&A, 265, 682 Google Scholar
Donati, J.-F., Semel, M., Carter, B. D., et al. 1997, MNRAS, 291, 658 CrossRefGoogle Scholar
Donati, J.-F., Collier Cameron, A., & Petit, P. 2003, MNRAS, 345, 1187 CrossRefGoogle Scholar
Donati, J.-F., Catala, C., Landstreet, J. D., et al. 2006a, Solar Polarization 4, 362a Google Scholar
Donati, J.-F., Howarth, I. D., Jardine, M. M., et al. 2006b, MNRAS, 370, 629 CrossRefGoogle Scholar
Folsom, C. P., Bouvier, J., Petit, P., et al. 2018, MNRAS, 474, 4956 CrossRefGoogle Scholar
Folsom, C. P., Petit, P., Bouvier, J., et al. 2016, MNRAS, 457, 580 CrossRefGoogle Scholar
Lodieu, N., McCaughrean, M. J., Navascues, Barrado Y, D., et al. 2005, VizieR Online Data Catalog, J/A+A/436/853CrossRefGoogle Scholar
Petit, P., Donati, J.-F., & Collier Cameron, A. 2002, MNRAS, 334, 374 CrossRefGoogle Scholar
Petit, P., Dintrans, B., Solanki, S. K., et al. 2008, MNRAS, 388, 80 CrossRefGoogle Scholar
Pillitteri, I., Remage Evans, N., Wolk, S. J., et al. 2013, AJ, 145, 143 CrossRefGoogle Scholar
Semel, M. 1989, A&A, 225, 456 Google Scholar
Stauffer, J. R., Barrado y Navascués, D., Bouvier, J., et al. 1999, ApJ, 527, 219 CrossRefGoogle Scholar
Vidotto, A. A., Gregory, S. G., Jardine, M., et al. 2014, MNRAS, 441, 2361 CrossRefGoogle Scholar
Vogt, S. S., Penrod, G. D., & Hatzes, A. P. 1987, ApJ, 321, 496 CrossRefGoogle Scholar
Yen, S. X., Reffert, S., Schilbach, E., et al. 2018, A&A, 615, A12 Google Scholar
Zacharias, N., Finch, C. T., Girard, T. M., et al. 2012, VizieR Online Data Catalog, I/322AGoogle Scholar