Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T13:39:57.605Z Has data issue: false hasContentIssue false

Magnetic field amplification by relativistic shocks in a turbulent medium

Published online by Cambridge University Press:  08 June 2011

Yosuke Mizuno
Affiliation:
CSPAR, The University of Alabama in Huntsville, 320 Sparkman Drive, NSSTC, Huntsville, AL 35805, USA email: [email protected]
Martin Pohl
Affiliation:
Institute of Physics and Astronomy, Universität Potsdam, 14476 Potsdam-Golm, Germany
Jacek Niemiec
Affiliation:
Institute of Nuclear Physics PAN, Kraków, Poland
Bing Zhang
Affiliation:
Dept. of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
Ken-Ichi Nishikawa
Affiliation:
CSPAR, The University of Alabama in Huntsville, 320 Sparkman Drive, NSSTC, Huntsville, AL 35805, USA email: [email protected]
Philip E. Hardee
Affiliation:
Dept. Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We perform two-dimensional relativistic magnetohydrodynamic simulations of a mildly relativistic shock propagating through an inhomogeneous medium. We show that the postshock region becomes turbulent owing to preshock density inhomogeneities, and the magnetic field is strongly amplified due to the stretching and folding of field lines in the turbulent velocity field. The amplified magnetic field evolves into a filamentary structure in our two-dimensional simulations. The magnetic energy spectrum is flatter than Kolmogorov and indicates that a so-called small-scale dynamo is operating in the postshock region. We also find that the amount of magnetic-field amplification depends on the direction of the mean preshock magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Balsara, D. S., Kim, J. S., Mac Low, M., & Mathews, G. J. 2004 ApJ 617, 339CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005 Phys. Rep. 417, 1CrossRefGoogle Scholar
Childress, S. & Gilbert, A. 1995 Stretch, Twist, Fold: The Fast Dynamo (Berlin: Springer)Google Scholar
Giacalone, J. & Jokipii, R. 2007 ApJ 663, L41CrossRefGoogle Scholar
Medvedev, M. V. & Loeb, A. 1999 ApJ 526, 697CrossRefGoogle Scholar
Mészáros, P. 2006 Rep. Prog. Phys., 69, 2259CrossRefGoogle Scholar
Panaitescu, A. & Kumar, P. 2002 ApJ 571, 779CrossRefGoogle Scholar
Piran, T. 2005 Rev. of Mod. Phys. 76, 1143CrossRefGoogle Scholar
Sironi, L. & Goodman, J. 2007 ApJ 671, 1858CrossRefGoogle Scholar
Spitkovsky, A. 2008 ApJ 673, L39CrossRefGoogle Scholar
Mizuno, Y., Nishikawa, K.-I., Koide, S., Hardee, P., & Fishman, G. J. 2006 ArXiv Astrophysics e-prints 0609004Google Scholar
Mizuno, Y., Pohl, M., Niemiec, J., Zhang, B., Nishikawa, K.-I., & Hardee, P. E. 2010 ApJ submittedGoogle Scholar