Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T17:34:27.958Z Has data issue: false hasContentIssue false

The Luminosity Problem: Testing Theories of Star Formation

Published online by Cambridge University Press:  27 April 2011

Christopher F. McKee
Affiliation:
Departments of Physics and Astronomy, University of California, Berkeley, CA94720, USA and Laboratoire d'Etudes du Rayonnement et de la Matière en Astrophysique, LERMA-LRA, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris, France email: [email protected]
Stella R. R. Offner
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge MA 02138, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-mass protostars are less luminous than expected. This luminosity problem is important because the observations appear to be inconsistent with some of the basic premises of star formation theory. Two possible solutions are that stars form slowly, which is supported by recent data, and/or that protostellar accretion is episodic; current data suggest that the latter accounts for less than half the missing luminosity. The solution to the luminosity problem bears directly on the fundamental problem of the time required to form a low-mass star. The protostellar mass and luminosity functions provide powerful tools both for addressing the luminosity problem and for testing theories of star formation. Results are presented for the collapse of singular isothermal spheres, for the collapse of turbulent cores, and for competitive accretion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Andersen, M., Meyer, M. R., Greissl, J., & Aversa, A. 2008, ApJL, 683, L183CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 1997, MNRAS, 285, 201CrossRefGoogle Scholar
Bonnell, I. A., Bate, M. R., Clarke, C. J., & Pringle, J. E. 2001, MNRAS, 323, 785CrossRefGoogle Scholar
Bontemps, S., Andre, P., Terebey, S., & Cabrit, S. 1996, A&A, 311, 858Google Scholar
Foster, P. N. & Chevalier, R. A. 1993, ApJ, 416, 303CrossRefGoogle Scholar
Hartmann, L., Cassen, P., & Kenyon, S. J. 1997, ApJ, 475, 770CrossRefGoogle Scholar
Hennebelle, P. & Chabrier, G. 2008, ApJ, 684, 395CrossRefGoogle Scholar
Henriksen, R., Andre, P., & Bontemps, S. 1997, A&A, 323, 549Google Scholar
Larson, R. B. 1969, MNRAS, 145, 271CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2002, Nature, 416, 59CrossRefGoogle Scholar
McKee, C. F. & Tan, J. C. 2003, ApJ, 585, 850CrossRefGoogle Scholar
Myers, P. C., Adams, F. C., Chen, H. & Schaff, E. 1998, ApJ, 492, 703CrossRefGoogle Scholar
Myers, P. C. & Fuller, G. A. 1992, ApJ, 396, 631CrossRefGoogle Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, 703, 131.Google Scholar
Ostriker, E. C. & Shu, F. H. 1995, ApJ, 447, 813CrossRefGoogle Scholar
Penston, M. V. 1969, MNRAS, 144, 425CrossRefGoogle Scholar
Schmeja, S. & Klessen, R. S. 2004, A&A, 419, 405Google Scholar
Shibata, K. & Uchida, Y. 1985, PASJ, 37, 31Google Scholar
Shu, F. H. 1977, ApJ, 214, 488CrossRefGoogle Scholar
Stahler, S. W. 1988, ApJ, 332, 804CrossRefGoogle Scholar
Tan, J. C. & McKee, C. F. 2004, ApJ, 603, 383CrossRefGoogle Scholar
Zinnecker, H. 1982, Annals of the New York Academy of Sciences, 395, 226CrossRefGoogle Scholar