Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T11:48:41.106Z Has data issue: false hasContentIssue false

LSD and AMAZE: the mass-metallicity relation at z > 3

Published online by Cambridge University Press:  01 June 2008

F. Mannucci
Affiliation:
INAF - IRA, Largo E. Fermi 5, I-50125, Firenze, Italy email: [email protected]
R. Maiolino
Affiliation:
INAF - OAR, Roma
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present the first results on galaxy metallicity evolution at z > 3 from two projects, LSD (Lyman-break galaxies Stellar populations and Dynamics) and AMAZE (Assessing the Mass Abundance redshift Evolution). These projects use deep near-infrared spectroscopic observations of a sample of ~40 LBGs to estimate the gas-phase metallicity from the emission lines. We derive the mass-metallicity relation at z > 3 and compare it with the same relation at lower redshift. Strong evolution from z = 0 and z = 2 to z = 3 is observed, and this finding puts strong constraints on the models of galaxy evolution. These preliminary results show that the effective oxygen yields do not increase with stellar mass, implying that the simple outflow model does not apply at z > 3.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Brooks, A. M., et al. , 2007, ApJ, 655, L17CrossRefGoogle Scholar
Chapman, S. C., et al. , 2005, ApJ, 662, 772CrossRefGoogle Scholar
Conselice, S. C., et al. , 2007, MNRAS, 386, 909CrossRefGoogle Scholar
Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G., 1996, AJ, 112, 839CrossRefGoogle Scholar
de Rossi, M. E., Tissera, P. B., & Scannapieco, C., 2007, MNRAS, 374, 323CrossRefGoogle Scholar
Edmunds, D., 1990, MNRAS, 246, 678Google Scholar
Erb, D., 2006, ApJ, 644, 813CrossRefGoogle Scholar
Franx, M., et al. , 2003, ApJ, 587, 79CrossRefGoogle Scholar
Garnett, D., 2002, ApJ, 581, 1019CrossRefGoogle Scholar
Grazian, A., et al. , 2007, A&A, 465, 393Google Scholar
Kewley, L. & Ellison, S. L. 2008, ApJ, 681, 1183CrossRefGoogle Scholar
Kobayashi, C., Springel, V., & White, S. D. M. 2007, MNRAS, 376, 1465CrossRefGoogle Scholar
Köppen, J., Weidner, C., & Kroupa, P. 2007, MNRAS, 375, 673CrossRefGoogle Scholar
Lee, H., et al. , 2006, ApJ, 647, 970CrossRefGoogle Scholar
Maiolino, R., et al. , 2008, A&A, 329, 57Google Scholar
Mannucci, F., et al. 2002, MNRAS, 329, 57CrossRefGoogle Scholar
Mannucci, F., et al. , 2006, MNRAS, 360, 773CrossRefGoogle Scholar
Mannucci, F., et al. , 2007, A&A, 461, 423Google Scholar
Nagao, F., et al. , 2006, A&A, 459, 85Google Scholar
Pozzetti, F., et al. , 2007, A&A, 474, 443Google Scholar
Savaglio, S., et al. , 2005, ApJ, 635, 260CrossRefGoogle Scholar
Steidel, C., et al. , 2004, ApJ, 604, 534CrossRefGoogle Scholar
Tornatore, L. et al. , 2007 MNRAS, 382, 945CrossRefGoogle Scholar
Tremonti, C. A., et al. , 2004, ApJ, 613, 898CrossRefGoogle Scholar