Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T22:48:57.120Z Has data issue: false hasContentIssue false

Low Metallicity ISM: excess submillimetre emission and CO-free H2 gas

Published online by Cambridge University Press:  17 August 2012

Suzanne C. Madden
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Aurélie Rémy
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Frédéric Galliano
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Maud Galametz
Affiliation:
Institute of Astronomy, University of Cambridge, Madingly Rd., Cambridge, UK
George Bendo
Affiliation:
Alma Regional Center, University of Manchester, Oxford Rd., Manchester, UK
Diane Cormier
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Vianney Lebouteiller
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Sacha Hony
Affiliation:
CEA Saclay, DSM, AIM, Service d'Astrophysique, Gif-sur-Yvette 91911, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The low metallicity interstellar medium of dwarf galaxies gives a different picture in the far infrared(FIR)/submillimetre(submm)wavelengths than the more metal-rich galaxies. Excess emission is often found in the submm beginning at or beyond 500 μm. Even without taking this excess emission into account as a possible dust component, higher dust-to-gas mass ratios (DGR) are often observed compared to that expected from their metallicity for moderately metal-poor galaxies. The Spectral Energy Distributions (SEDs) of the lowest metallicity galaxies, however, give very low dust masses and excessively low values of DGR, inconsistent with the amount of metals expected to be captured into dust if we presume the usual linear relationship holding for all metallicities, including the more metal-rich galaxies. This transition seems to appear near metalllicities of 12 + log(O/H) 8.0 - 8.2. These results rely on accurately quantifying the total molecular gas reservoir, which is uncertain in low metallicity galaxies due to the difficulty in detecting CO(1-0) emission. Dwarf galaxies show an exceptionally high [CII] 158 μm/CO (1-0) ratio which may be indicative of a significant reservoir of ‘CO-free’ molecular gas residing in the photodissociated envelope, and not traced by the small CO cores.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bendo, G., Galliano, G., & Madden, S. C. 2012, MNRAS submittedGoogle Scholar
Brauher, J. R., Dale, D. A., & Helou, G. 2008, ApJS, 178, 280CrossRefGoogle Scholar
Dale, D. A., Aniano, G., Engelbracht, C. W., Hinz, J. L., Krause, O. et al. 2012, ApJ, 745, 95CrossRefGoogle Scholar
Draine, B. T. & Lazarian, A. 1998, ApJ, 508, 157CrossRefGoogle Scholar
Engelbracht, C. W., Rieke, G. H., Gordon, K. D., Smith, J.-D. T. et al. 2008, ApJ, 678, 804CrossRefGoogle Scholar
Galametz, M., Madden, S. C., Galliano, F., Hony, S., Bendo, G. J. et al. 2011, A&A, 532, 56Google Scholar
Galliano, F., Madden, S. C., Jones, A., Wilson, C., et al. 2003, A&A, 407, 159Google Scholar
Galliano, F., Madden, S. C., Jones, A. P., Wilson, C. D., & Bernard, J.-P. 2005, A&A, 434, 867Google Scholar
Galliano, F., Dwek, E., & Chanial, P. 2008, A&A, 672, 214Google Scholar
Galliano, F., Hony, S., Bernard, J.-P., Bot, C., Madden, S. C. et al. 2011, A&A, 536, 88Google Scholar
Griffin, M., Abergel, A., Abreu, A., Ade, P. A. R. et al. 2010, A&A, 518, 3Google Scholar
Houck, J. R., Charmandaris, V., Brandl, B. R., Weedman, D. et al. 2004, ApJS, 154, 211CrossRefGoogle Scholar
Hunter, D. A., Gallagher, J. S. III, Rice, W. L., et al. 1989, A&A, 336, 152Google Scholar
Israel, F. P., Maloney, P. R., Geis, N., Herrmann, F., Madden, S. C. et al. 1996, ApJ, 465, 738CrossRefGoogle Scholar
Lebouteiller, V., Cormier, D., Madden, S. C., et al. 2012, A&A, submittedGoogle Scholar
Leroy, A. K., Walter, F., Bigiel, F., Usero, A., Weiss, A. et al. 2009, AJ, 137, 4670CrossRefGoogle Scholar
Lisenfeld, U., Israel, F. P., Stil, J. M., & Sievers, A.l 2002, A&A, 382, 860Google Scholar
Madden, S. C., Poglitsch, A., Geis, N., Stacey, G. J., & Townes, C. H. 1997, ApJ, 483, 200CrossRefGoogle Scholar
Madden, S. C. 2000, NewAR, 44, 249CrossRefGoogle Scholar
Madden, S. C., Galliano, F., Jones, A. P., & Sauvage, M. 2006, A&A, 446, 877Google Scholar
Melisse, J. P. M. & Israel, F. P. 1994, A&A, 285, 51Google Scholar
Mény, C., Gromov, V., Boudet, N., Bernard, J.-Ph., et al. 2007, A&A, 468, 171Google Scholar
O'Halloran, B., Madden, S. C., & Abel, N. P. 2008, ApJ, 681, 1205CrossRefGoogle Scholar
Paradis, D., Paladini, R., Noriega-Crespo, A., Mény, C. et al. 2012, A&A, 537, 113Google Scholar
Poglitsch, A., Krabbe, A., Madden, S. C., Nikola, T., Geis, N. et al. 1995, ApJ, 454, 293CrossRefGoogle Scholar
Poglitsch, A., Waelkens, C., Geis, N., Feuchtgruber, H. et al. 2010, A&A, 518, 1Google Scholar
Popescu, C. C., Tuffs, R. J., Völk, H. J. et al. 2002, ApJ, 567, 221CrossRefGoogle Scholar
Rubin, D., Hony, S., Madden, S. C., Tielens, A. G. G. M. et al. 2009, A&A, 494, 647Google Scholar
Stacey, G. J., Hailey-Dunsheath, S., Ferkinhoff, C., Nikola, T. et al. 2010, ApJ, 724, 957CrossRefGoogle Scholar
Wolfire, M. G., Hollenbach, D., & McKee, C. F. 2010, ApJ, 716, 1191CrossRefGoogle Scholar
Wu, Y., Charmandaris, V., Hao, L., Brandl, B. R., et al. 2006, ApJ, 639, 157CrossRefGoogle Scholar
Ysard, N., Miville-Deschnes, M. A., & Verstraete, L. 2010, A&A 509, 1Google Scholar
Zhu, M., Papadopoulos, P., Xilouris, , et al. 2009, ApJ, 706, 941CrossRefGoogle Scholar