Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T05:12:44.679Z Has data issue: false hasContentIssue false

Long-term evolution of exoplanet systems

Published online by Cambridge University Press:  16 October 2024

Cristobal Petrovich*
Affiliation:
Instituto de Astrofisica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile. Millennium Institute for Astrophysics, Chile
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this Review, I discuss recent developments on the long-term dynamical evolution of exoplanet systems, focusing on how distinctive dynamical processes may have shaped the orbital architectures of observed populations. I include three applications that highlight part of my own work. First, I examine the high-eccentricity tidal migration of hot Jupiters from a phase of dynamical instability and subsequent secular interactions in two-planet systems. Second, secular chaos as the origin of ultra-short-period planets with extreme period ratios. Third, secular resonance sweeping driven by a dispersing protoplanetary disk as the origin hot Neptunes residing in polar orbits. Finally, I discuss how upcoming observations will allow further constraining the prevalence of these dynamical processes.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beaugé, C. & Nesvorný, D. 2012, Multiple-planet Scattering and the Origin of Hot Jupiters. ApJ, 751(2), 119.CrossRefGoogle Scholar
Best, S., Sefilian, A. A., & Petrovich, C. 2023, The influence of cold Jupiters in the formation of close-in planets. I. planetesimal transport. arXiv e-prints, arXiv:2304.02045.Google Scholar
Chambers, J. E. 1999, A hybrid symplectic integrator that permits close encounters between massive bodies. MNRAS, 304(4), 793799.CrossRefGoogle Scholar
Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. 2008, Dynamical Outcomes of Planet-Planet Scattering. ApJ, 686(1), 580602.CrossRefGoogle Scholar
Dai, F., Masuda, K., & Winn, J. N. 2018, Larger Mutual Inclinations for the Shortest-period Planets. ApJL, 864(2), L38.CrossRefGoogle Scholar
Eggleton, P. P., Kiseleva, L. G., & Hut, P. 1998, The Equilibrium Tide Model for Tidal Friction. ApJ, 499(2), 853870.CrossRefGoogle Scholar
Espinoza-Retamal, J. I., Brahm, R., Petrovich, C., Jordán, A., & Stefánsson, Gumundur, e. a. 2023a, The Aligned Orbit of the Eccentric Proto Hot Jupiter TOI-3362b. arXiv e-prints, arXiv:2309.03306.Google Scholar
Espinoza-Retamal, J. I., Zhu, W., & Petrovich, C. 2023,b Prospects from TESS and Gaia to constrain the flatness of planetary systems. arXiv e-prints, arXiv:2309.08665.Google Scholar
Faber, J. A., Rasio, F. A., & Willems, B. 2005, Tidal interactions and disruptions of giant planets on highly eccentric orbits. Icarus, 175(1), 248262.CrossRefGoogle Scholar
Ford, E. B., Havlickova, M., & Rasio, F. A. 2001, Dynamical Instabilities in Extrasolar Planetary Systems Containing Two Giant Planets. Icarus, 150(2), 303313.CrossRefGoogle Scholar
Garrido-Deutelmoser, J., Petrovich, C., Charalambous, C., Guzmán, V. V., & Zhang, K. 2023, A Gap-sharing Planet Pair Shaping the Crescent in HD 163296: A Disk Sculpted by a Resonant Chain. ApJL, 945(2), L37.CrossRefGoogle Scholar
Garzón, H. e. a. 2022, Production of hot Jupiter candidates from high-eccentricity mechanisms for different initial planetary mass configurations. MNRAS, 517(4), 49865002.CrossRefGoogle Scholar
Hansen, B. M. S. & Murray, N. 2013, Testing in Situ Assembly with the Kepler Planet Candidate Sample. ApJ, 775(1), 53.CrossRefGoogle Scholar
He, M. Y., Ford, E. B., Ragozzine, D., & Carrera, D. 2020, Architectures of Exoplanetary Systems. III. Eccentricity and Mutual Inclination Distributions of AMD-stable Planetary Systems. AJ, 160(6), 276.Google Scholar
Henrard, J. & Lemaitre, A. 1983, A Second Fundamental Model for Resonance. Celestial Mechanics, 30(2), 197218.CrossRefGoogle Scholar
Heppenheimer, T. A. 1980, Secular resonances and the origin of eccentricities of Mars and the asteroids. Icarus, 41(1), 7688.CrossRefGoogle Scholar
Jurić, M. & Tremaine, S. 2008, Dynamical Origin of Extrasolar Planet Eccentricity Distribution. ApJ, 686(1), 603620.Google Scholar
Laskar, J. 2008, Chaotic diffusion in the Solar System. Icarus, 196(1), 115.CrossRefGoogle Scholar
Lemaitre, A. & Dubru, P. 1991, Secular Resonances in the Primitive Solar Nebula. Celestial Mechanics and Dynamical Astronomy, 52(1), 5778.CrossRefGoogle Scholar
Li, G., Naoz, S., Kocsis, B., & Loeb, A. 2014, Eccentricity Growth and Orbit Flip in Near-coplanar Hierarchical Three-body Systems. ApJ, 785(2), 116.CrossRefGoogle Scholar
Nagasawa, M., Ida, S., & Bessho, T. 2008, Formation of Hot Planets by a Combination of Planet Scattering, Tidal Circularization, and the Kozai Mechanism. ApJ, 678(1), 498508.CrossRefGoogle Scholar
Nagasawa, M., Lin, D. N. C., & Ida, S. 2003, Eccentricity Evolution of Extrasolar Multiple Planetary Systems Due to the Depletion of Nascent Protostellar Disks. ApJ, 586(2), 13741393.CrossRefGoogle Scholar
Nagasawa, M., Lin, D. N. C., & Thommes, E. 2005, Dynamical Shake-up of Planetary Systems. I. Embryo Trapping and Induced Collisions by the Sweeping Secular Resonance and Embryo-Disk Tidal Interaction. ApJ, 635(1), 578598.CrossRefGoogle Scholar
Petrovich, C. 2015, Hot Jupiters from Coplanar High-eccentricity Migration. ApJ, 805(1), 75.CrossRefGoogle Scholar
Petrovich, C., Deibert, E., & Wu, Y. 2019, Ultra-short-period Planets from Secular Chaos. AJ, 157(5), 180.CrossRefGoogle Scholar
Petrovich, C., Muñoz, D. J., Kratter, K. M., & Malhotra, R. 2020, A Disk-driven Resonance as the Origin of High Inclinations of Close-in Planets. ApJL, 902(1), L5.CrossRefGoogle Scholar
Petrovich, C., Tremaine, S., & Rafikov, R. 2014, Scattering Outcomes of Close-in Planets: Constraints on Planet Migration. ApJ, 786(2), 101.CrossRefGoogle Scholar
Pu, B. & Lai, D. 2019, Low-eccentricity migration of ultra-short-period planets in multiplanet systems. MNRAS, 488(3), 35683587.CrossRefGoogle Scholar
Rasio, F. A. & Ford, E. B. 1996, Dynamical instabilities and the formation of extrasolar planetary systems. Science, 274, 954956.CrossRefGoogle ScholarPubMed
Rein, H. & Liu, S. F. 2012, REBOUND: an open-source multi-purpose N-body code for collisional dynamics. A&A, 537, A128.Google Scholar
Sefilian, A. A., Rafikov, R. R., & Wyatt, M. C. 2023, Formation of Gaps in Self-gravitating Debris Disks by Secular Resonance in a Single-planet System. II. Toward a Self-consistent Model. ApJ, 954(1), 100.CrossRefGoogle Scholar
Stefànsson, G., Mahadevan, S., Petrovich, C., Winn, J. N., Kanodia, S., & Millholland, S. C. e. a. 2022, The Warm Neptune GJ 3470b Has a Polar Orbit. ApJL, 931(2), L15.CrossRefGoogle Scholar
Tamayo, D., Rein, H., Shi, P., & Hernandez, D. M. 2020, REBOUNDx: a library for adding conservative and dissipative forces to otherwise symplectic N-body integrations. MNRAS, 491(2), 28852901.CrossRefGoogle Scholar
Tremaine, S. 2015, The Statistical Mechanics of Planet Orbits. ApJ, 807(2), 157.CrossRefGoogle Scholar
Ward, W. R., Colombo, G., & Franklin, F. A. 1976, Secular Resonance, Solar Spin Down, and the Orbit of Mercury. Icarus, 28(4), 441452.CrossRefGoogle Scholar
Weidenschilling, S. J. & Marzari, F. 1996, Gravitational scattering as a possible origin for giant planets at small stellar distances. Nature, 384(6610), 619621.CrossRefGoogle ScholarPubMed
Winn, J. N. & Fabrycky, D. C. 2015, The Occurrence and Architecture of Exoplanetary Systems. ARA&A, 53, 409447.Google Scholar
Wu, Y. & Lithwick, Y. 2011, Secular Chaos and the Production of Hot Jupiters. ApJ, 735(2), 109.CrossRefGoogle Scholar
Zhu, W. & Dong, S. 2021, Exoplanet Statistics and Theoretical Implications. ARA&A, 59, 291336.Google Scholar
Zhu, W., Petrovich, C., Wu, Y., Dong, S., & Xie, J. 2018, About 30% of Sun-like Stars Have Kepler-like Planetary Systems: A Study of Their Intrinsic Architecture. ApJ, 860(2), 101.CrossRefGoogle Scholar