Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:50:19.248Z Has data issue: false hasContentIssue false

Local analogs of high-redshift galaxies: Metallicity calibrations at high-redshift

Published online by Cambridge University Press:  04 June 2020

Fuyan Bian
Affiliation:
European Southern Observatory, Alonso de Córdova 3107, Casilla 19001, Vitacura, Santiago19, Chile email: [email protected]
Lisa J. Kewley
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
Brent Groves
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
Michael A. Dopita
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study the metallicity calibrations in high-redshift galaxies using a sample of local analogs of high-redshift galaxies selected from the SDSS survey. Located in the same region on the BPT diagram as star-forming galaxies at z ∼ 2, these high-redshift analogs share the same ionized ISM conditions as high-redshift galaxies. We establish empirical metallicity calibrations between the direct gas-phase oxygen abundances and varieties of metallicity indicators in our local analogs using direct Te method. These new metallicity calibrations are the best means to measure the metallicity in high-redshift galaxies. There exist significant offsets between these new high-redshift metallicity calibrations and local calibrations. Such offsets are mainly driven by the evolution of the ionized ISM conditions from high-z to low-z.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bian, F., Fan, X., Bechtold, J., et al. 2010, ApJ, 725, 187710.1088/0004-637X/725/2/1877CrossRefGoogle Scholar
Bian, F., Kewley, L. J., Dopita, M. A., et al. 2018, ApJ, 859, 17510.3847/1538-4357/aabd74CrossRefGoogle Scholar
Bian, F., Kewley, L. J., Dopita, M. A., et al. 2017, ApJ, 834, 5110.3847/1538-4357/834/1/51CrossRefGoogle Scholar
Bian, F., Kewley, L. J., Dopita, M. A., et al. 2016, ApJ, 822, 6210.3847/0004-637X/822/2/62CrossRefGoogle Scholar
Garnett, D. R. 1992, AJ, 103, 133010.1086/116146CrossRefGoogle Scholar
Izotov, Y. I., Stasińska, G., Meynet, G., et al. 2006, A&A, 448, 955Google Scholar
Kaasinen, M., Bian, F., Groves, B., et al. 2017, MNRAS, 465, 322010.1093/mnras/stw2827CrossRefGoogle Scholar
Kewley, L. J. & Dopita, M. A. 2002, ApJS, 142, 3510.1086/341326CrossRefGoogle Scholar
Kewley, L. J., Maier, C., Yabe, K., et al. 2013, ApJ, 774, L1010.1088/2041-8205/774/1/L10CrossRefGoogle Scholar
Lilly, S. J., Carollo, C. M., Pipino, A., et al. 2013, ApJ, 772, 11910.1088/0004-637X/772/2/119CrossRefGoogle Scholar
Nakajima, K. & Ouchi, M. 2014, MNRAS, 442, 90010.1093/mnras/stu902CrossRefGoogle Scholar
Pettini, M. & Pagel, B. E. J. 2004, MNRAS, 348, L5910.1111/j.1365-2966.2004.07591.xCrossRefGoogle Scholar
Sanders, R. L., Shapley, A. E., Kriek, M., et al. 2016, ApJ, 816, 2310.3847/0004-637X/816/1/23CrossRefGoogle Scholar
Steidel, C. C., Rudie, G. C., Strom, A. L.et al. 2014, ApJ, 795, 16510.1088/0004-637X/795/2/165CrossRefGoogle Scholar