Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T01:11:47.476Z Has data issue: false hasContentIssue false

The lithium history of NGC 6397

Published online by Cambridge University Press:  18 January 2010

Francesca Primas
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching, Germany email: [email protected], [email protected]
Karin Lind
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching, Germany email: [email protected], [email protected]
Corinne Charbonnel
Affiliation:
Geneva Observatory, 51 chemin des Mailettes, 1290 Sauverny, Switzerland email: [email protected]
Frank Grundahl
Affiliation:
Department of Physics & Astronomy, Aarhus University, Ny Munkegade, 8000 Århus C, Denmark email: [email protected]
Martin Asplund
Affiliation:
Max-Planck-institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The primordial lithium abundance inferred from WMAP and standard Big Bang nucleosysnthesis is approximately three times higher than the plateau value measured in old metal-poor Population II stars, suggesting that these stars have undergone atmospheric Li depletion. To constrain the physics responsible for such depletion, we conducted a homogeneous analysis of a large sample of stars in the metal-poor globular cluster NGC 6397, covering all evolutionary phases from below the main-sequence turnoff to high up the red-giant branch (RGB). The dwarf, turnoff, and early subgiant stars form a thin abundance plateau, with a sharpe edge in the middle of the subgiant branch, where Li dilution caused by the inward extension of the convective envelope starts (the beginning of the so-called first dredge up). A second steep abundance drop is seen at the RGB bump, again highlighting the need for the onset of nonstandard mixing in this evolutionary phase. Moreover, by also measuring the sodium abundances of the targets, we have gained insight into the degree of pollution by early cluster self-enrichement, and may separate highly polluted, Li-poor and Na-rich stars from stars formed from pristine material. Our observational findings strictly limit both the extent of lithium surface depletion, which in turn constrains the efficiency of mixing below the outer convection zone, and the resulting spread in lithium abundance in metal-poor turn-off stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Alonso, A., Arribas, S., & Martínez–Roger, C. 1996, A&A, 313, 873Google Scholar
Alonso, A., Arribas, S., & Martínez–Roger, C. 1999, A&As, 140, 261Google Scholar
Boesgaard, A. M. & Steigman, G. 1985, ARA&A, 23, 319Google Scholar
Bennett, C. L., et al. ApJS, 148, 1CrossRefGoogle Scholar
Bonifacio, P., et al. 2002, A&A, 390, 91Google Scholar
Carretta, E., Gratton, R. G., Lucatello, S., Bragaglia, A., & Bonifacio, P. 2005, A&A, 433, 597Google Scholar
Castilho, B. V., Pasquini, L., Allen, D. M., Barbuy, B., & Molaro, P. 2000, A&A, 361, 92Google Scholar
Charbonnel, C. & Primas, F. 2005, A&A, 442, 961Google Scholar
Charbonnel, C. & Zahn, J.-P. 2007, A&A, 467, L15Google Scholar
Cyburt, R. H., Fields, B. D., & Olive, K. A. 2008, JCAPP, 11, 12CrossRefGoogle Scholar
Dunkley, J., et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
González Hernández, J. I., Bonifacio, P., Caffau, E., Steffen, M., Ludwig, H.-G., Behara, N. T., Sbordone, L., Cayrel, R., & Zaggia, S. 2009, A&A, 505, 13Google Scholar
Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å, & Plez, B. 2008, A&A, 486, 951Google Scholar
Korn, A. J., Grundahl, F., Richard, O., Mashonkina, L., Barklem, P. S., Collet, R., Gustafsson, B., & Piskunov, N. 2007, ApJ, 671, 402CrossRefGoogle Scholar
Lind, K., Asplund, M., & Barklem, P. S. 2009a, A&A, 503, 541Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009b, A&A, 503, 545Google Scholar
Mashonkina, L. I., Shimanskiĭ, V. V., & Sakhibullin, N. A. 2000, AstRep, 44, 790Google Scholar
Michaud, G., Fontaine, G., & Beaudet, G. 1984, ApJ, 282, 206CrossRefGoogle Scholar
Olive, K. A., Steigman, G., & Walker, T. P. 2000, Phys. Rev., 333, 389Google Scholar
Önehag, A., Gustafsson, B., Eriksson, K., & Edvardsson, B. 2009, A&A, 498, 527Google Scholar
Pasquini, L. & Molaro, P. 1996, A&A, 307, 761Google Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Ramírez, I. & Meléndez, J. 2005, ApJ, 626, 465CrossRefGoogle Scholar
Richard, O., Michaud, G., & Richer, J. 2005, ApJ, 619, 538CrossRefGoogle Scholar
Ryan, S. G., Kajino, T., Beers, T. C., Suzuki, T. K., Romano, D., Matteucci, F., & Rosolankova, K. 2001, ApJ, 549, 55CrossRefGoogle Scholar
Spergel, D. N., Verde, L., Peiris, H. V. 2003, ApJS 148, 175CrossRefGoogle Scholar
Spite, M. & Spite, F. 1982, Nature, 297, 483CrossRefGoogle Scholar
Thévenin, F., Charbonnel, C., de Freitas Pacheco, J. A., Idiart, T. P., Jasniewicz, G., de Laverny, P., & Plez, B. 2001, A&A, 373, 905Google Scholar