Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T16:01:56.527Z Has data issue: false hasContentIssue false

Linear line spectropolarimetry as a new window to measure 2D and 3D wind geometries

Published online by Cambridge University Press:  23 January 2015

Jorick S. Vink*
Affiliation:
Armagh Observatory, College Hill, BT61 9DG Armagh, Northern Ireland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Various theories have been proposed to predict how mass loss depends on the stellar rotation rate, both in terms of its strength, as well as its latitudinal dependence, crucial for our understanding of angular momentum evolution. Here we discuss the tool of linear spectropolarimetry that can probe the difference between mass loss from the pole versus the equator. Our results involve several groups of O stars and Wolf-Rayet stars, involving Oe stars, Of?p stars, Onfp stars, as well as the best candidate gamma-ray burst progenitors identified to date.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abbott, D. C. & Lucy, L. B. 1985, ApJ 288, 679CrossRefGoogle Scholar
Bjorkman, J. E. & Cassinelli, J. P. 1993, ApJ 409, 429CrossRefGoogle Scholar
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A 499, 279Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ 195, 157CrossRefGoogle Scholar
Davies, B., Vink, J. S., & Oudmaijer, R. D. 2007, A&A 469, 1045Google Scholar
Friend, D. B. & Abbott, D. C. 1986, ApJ 311, 701CrossRefGoogle Scholar
Gräfener, G., Vink, J. S., Harries, T. J., & Langer, N. 2012, A&A 547, A83Google Scholar
Harries, T. J., Hillier, D. J., & Howarth, I. D. 1998, MNRAS 296, 1072CrossRefGoogle Scholar
Harries, T. J., Howarth, I. D., & Evans, C. J. 2002, MNRAS 337, 341CrossRefGoogle Scholar
Lamers, H. J. G. & Pauldrach, A. W. A. 1991, A&A 244, L5Google Scholar
Maeder, A. & Meynet, G. 2000, A&A 361, 159Google Scholar
Müller, P. E. & Vink, J. S. 2008, A&A 492, 493Google Scholar
Müller, P. E. & Vink, J. S. 2014, A&A 564, A57Google Scholar
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJ (Letters) 472, L115CrossRefGoogle Scholar
Pelupessy, I., Lamers, H. J. G. L. M., & Vink, J. S. 2000, A&A 359, 695Google Scholar
Petrenz, P. & Puls, J. 2000, A&A 358, 956Google Scholar
Vink, J. S. 2007, A&A 469, 707Google Scholar
Vink, J. S., Davies, B., Harries, T. J., Oudmaijer, R. D., & Walborn, N. R. 2009, A&A 505, 743Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A 362, 295Google Scholar
Vink, J. S., Drew, J. E., Harries, T. J., & Oudmaijer, R. D. 2002, MNRAS 337, 356CrossRefGoogle Scholar
Vink, J. S., Gräfener, G., & Harries, T. J. 2011, A&A 536, L10Google Scholar
Vink, J. S., Harries, T. J., & Drew, J. E. 2005, A&A 430, 213Google Scholar
von Zeipel, H. 1924, MNRAS 84, 665CrossRefGoogle Scholar