Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:26:45.578Z Has data issue: false hasContentIssue false

Line of sight depth of the Large and Small Magellanic Clouds

Published online by Cambridge University Press:  01 July 2008

Annapurni Subramaniam
Affiliation:
Indian Institute of Astrophysics, Sarjapur Road, Koramangala II Block, Bangalore-560034, India email: [email protected], [email protected]
Smitha Subramaniam
Affiliation:
Indian Institute of Astrophysics, Sarjapur Road, Koramangala II Block, Bangalore-560034, India email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We used the red clump stars from the Optical Gravitational Lensing Experiment (OGLE II) survey and the Magellanic Cloud Photometric Survey (MCPS), to estimate the line-of-sight depth. The observed dispersion in the magnitude and colour distribution of red clump stars is used to estimate the line-of-sight depth, after correcting for the contribution due to other effects. This dispersion due to depth, has a range from minimum dispersion that can be estimated, to 0.46 mag (a depth of 500 pc to 10.44 kpc), in the LMC. In the case of the SMC, the dispersion ranges from minimum dispersion to 0.35 magnitude (a depth of 665 pc to 9.53 kpc). The thickness profile of the LMC bar indicates that it is flared. The average depth in the bar region is 4.0 ± 1.4 kpc. The halo of the LMC (using RR Lyrae stars) is found to have larger depth compared to the disk/bar, which supports the presence of an inner halo for the LMC. The large depth estimated for the LMC bar and the disk suggests that the LMC might have had minor mergers. In the case of the SMC, the bar depth (4.90 ± 1.23 kpc) and the disk depth (4.23 ± 1.48 kpc) are found to be within the standard deviations. We find evidence for an increase in depth near the optical center (up to 9 kpc). On the other hand, the estimated depth for the halo (RR Lyrae stars) and disk (RC stars) for the bar region of the SMC is found to be similar. Thus, increased depth and enhanced stellar as well as H i density near the optical center suggests that the SMC may have a bulge.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alves, D. R. & Nelson, C. A. 2000, ApJ, 542, 789CrossRefGoogle Scholar
Bekki, K. & Chiba, M. 2008, ApJ, 679, L89CrossRefGoogle Scholar
de Vaucouleurs, G. & Freeman, K. C. 1973, Vistas Astron., 14, 163CrossRefGoogle Scholar
Girardi, L. & Salaris, M. 2001, MNRAS, 323, 109CrossRefGoogle Scholar
Hatzidimitriou, D. & Hawkins, M. R. S. 1989, MNRAS, 241, 667CrossRefGoogle Scholar
Holtzman, J. A., Gallagher, J. S. III, Cole, A. A., et al. 1999, AJ, 118, 2262CrossRefGoogle Scholar
Mathewson, D. S., Ford, V. L., & Visvanathan, N. 1986, ApJ, 301, 664CrossRefGoogle Scholar
Pagel, B. E. J. & Tautvaisiene, G. 1998, MNRAS, 299, 535CrossRefGoogle Scholar
Rieke, G. H. & Lebofsky, M. J. 1985, ApJ, 288, 618CrossRefGoogle Scholar
Subramaniam, A. 2006, A&A, 449, 101Google Scholar
Udalski, A., Szymański, M., Kubiak, M., et al. 1998, AcA, 48, 147 (SMC OGLE II data)Google Scholar
Udalski, A., Szymański, M., Kubiak, M., et al. 2000, AcA, 50, 307 (LMC OGLE II data)Google Scholar
van der Marel, R. P., Alves, D. R., Hardy, E., & Suntzeff, N. B. 2002, AJ, 124, 2639CrossRefGoogle Scholar
Weinberg, M. D. 2000, ApJ, 532, 922CrossRefGoogle Scholar
Welch, D. L., McLaren, R. A., Madore, B. F., & McAlarey, C. W. 1987, ApJ, 321, 162CrossRefGoogle Scholar
Westurlund, B. E. 1997, The Magellanic Clouds (Cambridge: CUP)CrossRefGoogle Scholar
Zaritsky, D., Harris, J., Thompson, I. B., Grebel, E. K., & Massey, P. 2002, AJ, 123, 855CrossRefGoogle Scholar