Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:46:37.213Z Has data issue: false hasContentIssue false

Light Curve Modeling of Superluminous Supernovae

Published online by Cambridge University Press:  29 January 2014

Takashi Moriya
Affiliation:
Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: [email protected] Dept. of Astronomy, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan RESCEU, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
Sergei I. Blinnikov
Affiliation:
ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow, Russia Novosibirsk State University, Novosibirsk 630090, Russia SAI, Moscow University, Universitetski pr. 13, 119992 Moscow, Russia
Nozomu Tominaga
Affiliation:
Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: [email protected] Dept. of Physics, Konan University, 8-9-1 Okamoto, Kobe, Hyogo 658-8501, Japan
Naoki Yoshida
Affiliation:
Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: [email protected] Dept. of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
Masaomi Tanaka
Affiliation:
NAOJ, 2-21-1 Ohsawa, Mitaka, Tokyo 181-8588, Japan
Keiichi Maeda
Affiliation:
Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: [email protected]
Ken'ichi Nomoto
Affiliation:
Kavli IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8583, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Origins of superluminous supernovae (SLSNe) discovered by recent SN surveys are still not known well. One idea to explain the huge luminosity is the collision of dense CSM and SN ejecta. If SN ejecta is surrounded by dense CSM, the kinetic energy of SN ejecta is efficiently converted to radiation energy, making them very bright. To see how well this idea works quantitatively, we performed numerical simulations of collisions of SN ejecta and dense CSM by using one-dimensional radiation hydrodynamics code STELLA and obtained light curves (LCs) resulting from the collision. First, we show the results of our LC modeling of SLSN 2006gy. We find that physical parameters of dense CSM estimated by using the idea of shock breakout in dense CSM (e.g., Chevalier & Irwin 2011, Moriya & Tominaga 2012) can explain the LC properties of SN 2006gy well. The dense CSM's radius is about 1016 cm and its mass about 15 M. It should be ejected within a few decades before the explosion of the progenitor. We also discuss how LCs change with different CSM and SN ejecta properties and origins of the diversity of H-rich SLSNe. This can potentially be a probe to see diversities in mass-loss properties of the progenitors. Finally, we also discuss a possible signature of SN ejecta-CSM interaction which can be found in H-poor SLSN.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Chevalier, R. A. & Irwin, C. M. 2011, ApJ (Letters), 729, L6CrossRefGoogle Scholar
Dexter, J. & Kasen, D. 2012, arXiv, arXiv:1210.7240Google Scholar
Gal-Yam, A. 2012, Science, 337, 927Google Scholar
Gal-Yam, A., et al. 2009, Nature, 462, 624Google Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245Google Scholar
Leloudas, G., et al. 2012, A&A, 541, 192Google Scholar
Moriya, T. J., Blinnikov, S. I., Baklanov, P. V., Sorokina, E. I., & Dolgov, A. D. 2013a, MNRAS, 430, 1402Google Scholar
Moriya, T. J., Blinnikov, S. I., Tominaga, N., Yoshida, N., Tanaka, M., Maeda, K., & Nomoto, K. 2013b, MNRAS, 428, 1020Google Scholar
Moriya, T. J. & Maeda, K. 2012, ApJ (Letters), 756, L22CrossRefGoogle Scholar
Moriya, T. J. & Tominaga, N. 2012, ApJ, 747, 118Google Scholar
Moriya, T., Tominaga, N., Tanaka, M., Maeda, K., & Nomoto, K. 2010, ApJ (Letters), 717, L83Google Scholar
Prieto, J. L., Brimacombe, J., Drake, A. J., & Howerton, S. 2013, ApJ, 763, 27Google Scholar
Quimby, R. M., Fang, Y., Akerlof, C., & Wheeler, J. C. 2013, arXiv, arXiv:1302.0911Google Scholar
Quimby, R. M., et al. 2011, Nature, 474, 487Google Scholar
Smith, N. & McCray, R. 2007, ApJ (Letters), 671, L17Google Scholar
Smith, N., et al. 2010, ApJ, 686, 485Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2012, Nature, 450, 390Google Scholar