Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:04:06.774Z Has data issue: false hasContentIssue false

Lessons from detections of the near-infrared thermal emission of hot Jupiters

Published online by Cambridge University Press:  10 November 2011

Bryce Croll*
Affiliation:
Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto ON M5S 3H4 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There have recently been a flood of ground-based detections of the near-infrared thermal emission of a number of hot Jupiters. Although these near-infrared detections have revealed a great deal about the atmospheric characteristics of individual hot Jupiters, the question is: what information does this ensemble of near-infrared detections reveal about the atmospheric dynamics and reradiation of all hot Jupiters? I explore whether there is any correlation between how brightly these planets shine in the near-infrared compared to their incident stellar flux, as was theoretically predicted to be the case. Secondly, I look for whether there is any correlation between the host star's activity and the planet's near-infrared emission, like there is in the mid-infrared, where Spitzer observations have revealed a correlation between the host star activity with the presence, or lack thereof, of a temperature inversion and a hot stratosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Anderson, D. R., et al. 2010, A&A, 513, L3Google Scholar
Alonso, R., et al. 2009a, A&A, 501, L23Google Scholar
Alonso, R., et al. 2009b, A&A, 506, 353Google Scholar
Cowan, N. B. & Agol, E. 2011, ApJ, 729, 54Google Scholar
Charbonneau, D., et al. 2008, ApJ, 686, 1341CrossRefGoogle Scholar
Croll, B., et al. 2010a, ApJ, 717, 1084Google Scholar
Croll, B., et al. 2010b, ApJ, 718, 920CrossRefGoogle Scholar
Croll, B., et al. 2011, AJ, 141, 30Google Scholar
de Mooij, E. J. W. & Snellen, I. A. G. 2009, A&A, 493, L35Google Scholar
de Mooij, E. J. W., et al. 2011, A&A, 528, A49Google Scholar
Deming, D., et al. 2011, ApJ, 726, 95Google Scholar
Fressin, F., et al. 2010, ApJ, 711, 374Google Scholar
Gibson, N. P., et al. 2010, MNRAS, 404, L114Google Scholar
Gibson, N. P., et al. 2011, MNRAS, 411, 2199Google Scholar
Gillon, M., et al. 2009, A&A, 506, 359Google Scholar
Hubeny, I., et al. 2003, ApJ, 594, 1011Google Scholar
Knutson, H., et al. 2008a, ApJ, 673, 526Google Scholar
Knutson, H., et al. 2008b, ApJ, 691, 866Google Scholar
Knutson, H., et al. 2010, ApJ, 720, 1569Google Scholar
Lopez-Morales, M., et al. 2010, ApJ, 716, L36Google Scholar
Machalek, P., et al. 2008, ApJ, 684, 1427Google Scholar
Madhusudhan, N., et al. 2010, Nature, 469, 64Google Scholar
Madhusudhan, N. & Seager, S. 2010, ApJ, 725, 261Google Scholar
Mandell, A. M., et al. 2011, ApJ, 728, 18Google Scholar
O'Donovan, F. T., et al. 2010, ApJ, 710, 1551Google Scholar
Rogers, J. C., et al. 2009, ApJ, 707, 1707Google Scholar
Rowe, J. F., et al. 2008, ApJ, 689, 1345Google Scholar
Sing, D. K. & Lopez-Morales, M. 2009, A&A, 493, L31Google Scholar
Snellen, I. A. G., et al. 2009, Nature, 459, 543Google Scholar
Snellen, I. A. G., et al. 2010, A&A, 513, 76Google Scholar
Swain, M. R., et al. 2009a, ApJ, 690, L114CrossRefGoogle Scholar
Swain, M. R., et al. 2009b, ApJ, 704, 1616Google Scholar
Swain, M. R., et al. 2010, Nature, 463, 637Google Scholar
Todorov, K., et al. 2010, ApJ, 708, 498Google Scholar