Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T21:04:16.177Z Has data issue: false hasContentIssue false

Learning about the structure of strongly lensed AGNs from their lightcurves

Published online by Cambridge University Press:  04 March 2024

Dominique Sluse*
Affiliation:
Univerity of Liège STAR Institute, Quartier Agora - Allée du six Août, 19c B-4000 Liège, Belgium.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The lightcurves of strongly lensed AGNs get distorted due to gravitational microlensing, which differently magnifies the emission regions of AGNs depending on their size. This effect has been used to measure the size of the AGN accretion disc, but high photometric accuracy lightcurves reveal coherent variations on short time-scales that are not expected by standard accretion disc models. I show that this signal can be produced by emission from the Broad Line Region (BLR) but also by extended (diffuse) continuum emission. I explain how these features can be used to measure the size of the BLR but also reveal additional sources of emission. The multi-colour lightcurves of lensed AGNs, such as those to be obtained with the Vera Rubin Observatory, may become a powerful new tool to reveal the sub-parsec structure of AGNs, and shed light on elusive AGN emitting regions such as the one producing diffuse continuum emission.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Cackett, E. M., Gelbord, J., Li, Y.-R., et al. 2020, ApJ, 896, 1 CrossRefGoogle Scholar
Chelouche, D., Pozo Nuñez, F., & Kaspi, S. 2019, Nature Astronomy, 3, 251 CrossRefGoogle Scholar
Ellis, R. S., Bland-Hawthorn, J., Bremer, M., et al. 2017, arXiv e-prints, arXiv:1701.01976Google Scholar
Gould, A. & Miralda-Escudé, J. 1997, ApJl, 483, L13 CrossRefGoogle Scholar
Guo, H., Barth, A. J., & Wang, S. 2022, ApJ, 940, 20 CrossRefGoogle Scholar
Hutsemékers, D., Sluse, D., Braibant, L., & Anguita, T. 2015, A&A, 584, A61 CrossRefGoogle Scholar
Hutsemékers, D., Sluse, D., & Kumar, P. 2020, A&A, 633, A101 CrossRefGoogle Scholar
Korista, K. T., Alloin, D., Barr, P., et al. 1995, ApJs, 97, 285 Google Scholar
Korista, K. T. & Goad, M. R. 2001, ApJ, 553, 695 CrossRefGoogle Scholar
Lawrence, A. 2012, MNRAS, 423, 451 CrossRefGoogle Scholar
Millon, M., Courbin, F., Bonvin, V., et al. 2020, A&A, 640, A105 CrossRefGoogle Scholar
Neira, F., Anguita, T., & Vernardos, G. 2020, MNRAS, 495, 544 CrossRefGoogle Scholar
Netzer, H. 2022, MNRAS, 509, 2637 Google Scholar
Paic, E., Vernardos, G., Sluse, D., et al. 2022, A&A, 659, A21 CrossRefGoogle Scholar
Schechter, P. L., Udalski, A., Szyma\[{\rm{n'}}\]ski, M., et al. 2003, ApJ, 584, 657CrossRefGoogle Scholar
Schild, R. E. 1996, ApJ, 464, 125 CrossRefGoogle Scholar
Sluse, D. & Tewes, M. 2014, A&A, 571, A60 CrossRefGoogle Scholar
Sluse, D., Hutsemékers, D., Anguita, T., Braibant, L., & Riaud, P. 2015, A&A, 582, A109 CrossRefGoogle Scholar
Tewes, M., Courbin, F., Meylan, G., et al. 2013, A&A, 556, A22 CrossRefGoogle Scholar