Hostname: page-component-599cfd5f84-5kswg Total loading time: 0 Render date: 2025-01-07T07:07:43.005Z Has data issue: false hasContentIssue false

Large High Redshift Spectroscopic Surveys

Published online by Cambridge University Press:  05 December 2011

Olivier Le Fèvre*
Affiliation:
Laboratoire d'Astrophysique de Marseille, CNRS-Université de Provence, Marseille, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Deep spectroscopic redshift surveys have become an important tool for observational cosmology, supported by a new generation of wide field multi-object spectrographs. They bring high redshift accuracy and a wealth of spectral features necessary for precision astrophysics and have led to the outstanding progress in our understanding of the different phases of galaxy evolution. The measurement of the evolution of volume quantities like the luminosity and mass functions or the correlation function, has enabled a deep insight into galaxy evolution since redshifts z ≃ 7. The redshift distribution N(z,m) is a basic property but is still difficult to be reproduced by models. We have now a global perspective on the history of star formation with a peak at z = 1−2 but the decline in SFRD at higher redshifts is still to be confirmed. The evolution of the stellar mass density with a fast growth in red passive galaxies between z = 2 and z = 1 is well established. The contribution to galaxy mass assembly of key physical processes like merging or cold accretion is now well documented. However, the pioneer measurements at the high redshift end z > > 1 remain to be consolidated with robust sample selection and statistical accuracy from large spectroscopic redshift surveys, a challenge for the years to come.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Abazajian, K., et al. 2003, AJ, 126, 2081CrossRefGoogle Scholar
Abraham, R., et al. , 2004, AJ, 127, 2455CrossRefGoogle Scholar
Arnouts, S., et al. , 2007, A&A, 476, 137Google Scholar
Abbas, U., et al. , 2010, MNRAS, 406, 1306Google Scholar
Bouwens, R., et al. , 2009, ApJ, 705, 936CrossRefGoogle Scholar
Colless, M., et al. , 2001, MNRAS, 328, 1039Google Scholar
Conselice, C., et al. , 2007, MNRAS, 381, 862CrossRefGoogle Scholar
Daddi, E., et al. , 2004, ApJ, 617, 746Google Scholar
deAAAAlaAAAATorre, S., et al. , 2011, A&A, 525, 125Google Scholar
deAAAARavel, L., et al. , 2009, A&A, 498, 379Google Scholar
DeAAAALucia, G., & Blaizot, J., 2007, MNRAS, 375, 2Google Scholar
Faber, S., et al. , 2003, SPIE, 4841, 1657Google Scholar
Faber, S., et al. , 2007, ApJ, 665, 265Google Scholar
Garilli, B., LeAAAAFèvre, O., Guzzo, L., et al. , 2008, A&A, 486, 683Google Scholar
Glazebrook, K. et al. , 1995, MNRAS, 273, 157Google Scholar
Ilbert, O., et al. , 2010, ApJ, 709, 644CrossRefGoogle Scholar
LeAAAAFèvre, O., et al. , 1994, A&A, 282, 325Google Scholar
LeAAAAFèvre, O., et al. , 2003, SPIE, 4841, 1670Google Scholar
LeAAAAFèvre, O., Vettolani, G., Garilli, B., & Tresse, L., et al. , 2005, A&A, 439, 845Google Scholar
Lilly, S. J., LeAAAAFèvre, O., Crampton, D., Hammer, F., & Tresse, L., 1995, ApJ, 455, 50Google Scholar
Lilly, S. J., LeAAAAFèvre, O., & Renzini, A., et al. , 2007, ApJSupp, 172, 70Google Scholar
Lin, L., et al. , 2008, ApJ, 681, 232Google Scholar
Lopez-SanJuan, C., et al. , 2011, A&A, in press, arXiv:1009.5921Google Scholar
Madau, P., et al. , 1996, MNRAS, 283, 1388Google Scholar
Springel, V., et al. , 2005, Nature, 435, 629CrossRefGoogle Scholar
Steidel, C. C., et al. , 1996, ApJ, 462, 17CrossRefGoogle Scholar
Vanzella, E., et al. , 2006, A&A, 454, 423Google Scholar
Wilkins, , et al. , 2008, MNRAS, 385, 687CrossRefGoogle Scholar