Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T01:53:47.474Z Has data issue: false hasContentIssue false

Kinematics of the Milky Way disc from the RAVE survey combined with Gaia DR1

Published online by Cambridge University Press:  02 August 2018

Annie C. Robin
Affiliation:
Institut Utinam, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France email: [email protected]
Olivier Bienaymé
Affiliation:
Observatoire Astronomique de Strasbourg, Université de Strasbourg, CNRS, 11 rue de l’Université, F-67000 Strasbourg, France email: [email protected]
José G. Fernández-Trincado
Affiliation:
Institut Utinam, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France email: [email protected]
Céline Reylé
Affiliation:
Institut Utinam, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relying on the complementarity of Gaia proper motions with radial velocities of the RAVE survey, we attempt to constrain the kinematics of the Milky Way disc. Based on the population synthesis model, we simulate the observations, applying the detailed selection functions of the observations. The dynamics is described using a global gravitational potential computed from the mass distribution of the population model, approximated by a Stäckel potential (Bienaymé et al. 2015). We explore a set of free parameters (solar motion, age - velocity dispersion of the disc as a function of age, the velocity gradients, vertex deviation) using a Markov Chain Monte Carlo method. We show that the fitted model reproduces very well the radial velocity and proper motion distributions, allowing to constrain the thin and thick disc secular evolution with time.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bienaymé, O., Robin, A. C., & Crézé, M., 1987, A&A, 180, 94Google Scholar
Bienaymé, O., Robin, A. C., & Famaey, B., 2015, A&A, 581, A123Google Scholar
Bovy, J., Allende Prieto, C., Beers, T. C., et al. 2012, ApJ, 759, 131Google Scholar
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016, A&A, 595, A2Google Scholar
Crézé, M. & Robin, A. 1983, in IAU Colloq. 76: Nearby Stars and the Stellar Luminosity Function, ed. Philip, A. G. D. & Upgren, A. R., Vol. 76, 391Google Scholar
Czekaj, M. A., Robin, A. C., Figueras, F., Luri, X., & Haywood, M., 2014, A&A, 564, A102Google Scholar
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2016, A&A, 595, A2Google Scholar
Gomez, A. E., et al. 1997, in ESA Special Publication, Vol. 402, Hipparcos - Venice ’97, 621–624Google Scholar
Holmberg, J., Nordström, B., & Andersen, J., 2009, A&A, 501, 941Google Scholar
Kordopatis, G., Gilmore, G., Steinmetz, M., et al. 2013, AJ, 146, 134Google Scholar
Marin, J., Pudlo, P., Robert, C., & Ryder, R. 2011, Statistics and Computing, 1Google Scholar
Robin, A. C., Reylé, C., Fliri, J., et al. 2014, A&A, 569, A13Google Scholar
Robin, A. C., Bienaymé, O., Fernández-Trincado, J. G., & Reylé, C. 2017, A&A, astroph.1704.06274Google Scholar
Sharma, S., Bland-Hawthorn, J., Johnston, K. V., & Binney, J., 2011, ApJ, 730, 3Google Scholar