Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-07T23:03:14.374Z Has data issue: false hasContentIssue false

Kinematic and magnetic coherent structures in solar and stellar turbulence

Published online by Cambridge University Press:  27 November 2018

Abraham C.-L. Chian
Affiliation:
University of Adelaide, School of Mathematical Sciences, Adelaide SA 5005, Australia. email: [email protected] National Institute for Space Research (INPE), São José dos Campos SP 12227-010, Brazil.
Rodrigo A. Miranda
Affiliation:
UnB-Gama Campus, University of Brasília (UnB), Brasília DF 70910-900, Brazil. Plasma Physics Laboratory, Institute of Physics, University of Brasília (UnB), Brasília DF 70910-900, Brazil.
Erico L. Rempel
Affiliation:
National Institute for Space Research (INPE), São José dos Campos SP 12227-010, Brazil. Institute of Aeronautical Technology (ITA), São José dos Campos SP 12228-900, Brazil.
Brigitte Schmieder
Affiliation:
Observatoire de Paris, LESIA, 5 place Janssen, 92195 Meudon, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that on-off intermittency in solar and stellar cycles is a result of amplitude-phase synchronization in multiscale interactions in solar/stellar dynamos or magnetorotational instability which leads to the formation of kinematic and magnetic coherent structures, and the novel techniques of Lagrangian coherent structures can detect transport barriers and vortices such as magnetic flux tubes/ropes in solar and stellar turbulence with high accuracy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Chian, A. C.-L., Miranda, R. A., Rempel, E. L., Saiki, Y., & Yamada, M. 2010, Phys, Rev. Lett., 104, 254102.Google Scholar
Chian, A. C.-L., Rempel, E. L., Aulanier, A., Schmieder, B., Shadden, S. C., Welsch, B. T., & Yeates, A. R. 2014, ApJ, 786, 51.Google Scholar
Haller, G. 2015, Annu. Rev. Fluid Mech., 47, 137.Google Scholar
He, K. & Chian, A. C.-L. 2013, Phys. Rev. Lett., 91, 034102.Google Scholar
McIntosh, S. W., Cramer, W. J., Marcano, M. P., & Leamon, R. J. 2017, Nature Ast., 1, 0086.Google Scholar
Miranda, R. A., Rempel, E. L., & Chian, A. C.-L. 2015, MNRAS, 448, 804.Google Scholar
Rempel, E. L., Proctor, M. R. E., & Chian, A. C.-L. 2009, MNRAS, 400, 509.Google Scholar
Rempel, E. L., Chian, A. C.-L., & Brandenburg, A. 2011, ApJL, 735, L9.Google Scholar
Rempel, E. L., Chian, A. C.-L., Beron-Vera, F. J., Szanyi, S., & Haller, G. 2017, MNRAS, 466, L108.Google Scholar
Roudier, T., Schmieder, B., Filippov, B., Chandra, R., & Malherbe, J. M. 2018, A&A, submitted.Google Scholar
Zimovets, I., Vilmer, N., Chian, A. C.-L., Sharykin, I., & Struminsky, A. 2012, A&A, 547, A6.Google Scholar
Yeates, A. R., Hornig, G., & Welsch, B. T. 2012, A&A, 539, A1.Google Scholar