Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T19:01:28.332Z Has data issue: false hasContentIssue false

The Juno Mission

Published online by Cambridge University Press:  03 November 2010

S. J. Bolton
Affiliation:
Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228, United States email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Juno is the next NASA New Frontiers mission which will launch in August 2011. The mission is a solar powered spacecraft scheduled to arrive at Jupiter in 2016 and be placed into polar orbit around Jupiter. The goal of the Juno mission is to explore the origin and evolution of the planet Jupiter. Juno's science themes include (1) origin, (2) interior structure, (3) atmospheric composition and dynamics, and (4) polar magnetosphere and aurora. A total of nine instruments on-board provide specific measurements designed to investigate Juno's science themes. The primary objective of investigating the origin of Jupiter includes 1) determine Jupiter's internal mass distribution by measuring gravity with Doppler tracking, 2) determine the nature of its internal dynamo by measuring its magnetic fields with a magnetometer, and 3) determine the deep composition (in particular the global water abundance) and dynamics of the sub-cloud atmosphere around Jupiter, by measuring its thermal microwave emission.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Janssen, M. A., Hofstadter, M. D., Gulkis, S., Ingersoll, A. P., Allison, M., Bolton, S. J., & Kamp, L. W. 2005, Microwave Remote Sensing of Jupiter's Atmosphere from an Orbiting Spacecraft Icarus, 173, 447453Google Scholar
Strom, S. E., Edwards, S., & Skrutskie, M. F. 1993, Evolutionary time scales for circumstellar disks associated with intermediate- and solar-type stars, Protostars and Planets III, Levy, E. H. and Lunine, J. I., Eds., University of Arizona Press, 837Google Scholar
Mizuno, H. 1980, Formation of the giant planets. Prog. Theor. Phys., 64, 544557CrossRefGoogle Scholar
Lissauer, J. J. 1993, Planet formation. Ann Rev. Astr. Astrophys. 31, 129CrossRefGoogle Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. 1996, Formation of the giant planets by concurrent accretion of solids and gases, Icarus 124, 62.CrossRefGoogle Scholar
Hersant, F., Gautier, D., & Lunine, J. I. 2003, Enrichment in volatiles in the giant planets of the solar system, Planetary and Space Sci., in press.CrossRefGoogle Scholar
Wuchterl, G., Guillot, T., & Lissauer, J. J. 2000, Giant planet formation. Protostars and Planets IV, Mannings, V., Boss, A. P., and Russel, S. S., Eds., University of Arizona Press, 10811109Google Scholar
Boss, A. P. 1997, Giant planet formation by gravitational instability, Science 276, 1836, 2000: Possible rapid gas-giant planet formation in the solar nebula and other protoplanetaryCrossRefGoogle Scholar
Guillot, T. & Gladman, B. 2000, Late planetesimal delivery and the composition of giant planets. Proc. Disks, Planetesimals, and Planets Conf., Garzon, F. et al. , Eds., ASP Conf. Ser., 475485Google Scholar
Owen, T. C. & Encrenaz, T. 2003, Element abundances and isotope ratios in the giant planets and Titan, Sp. Sci. Rev., 106, 121138CrossRefGoogle Scholar
Owen, T. C., Atreya, S. K., Mahaffy, P., Niemann, H. B., & Wong, M. H. 1997, On the origin of Jupiter's atmosphere and the volatiles on the Medicean stars. Three Galileos: The Man, the Spacecraft, the Telescope, Barbieri, C. et al. , Eds., Kluwer Academic Publishers, 289-297CrossRefGoogle Scholar
Niemann, H. B., Atreya, S. K., Carignan, G. R., Donahue, T. M., Haberman, J. A., Harpold, D. N., Hartle, R. E., Hunten, D. M., Kasprzak, W. T., Mahaffy, P. R., Owen, T. C., & Way, S. H. 1998, The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer. J. Geophys. Res., 103, 2283122846CrossRefGoogle ScholarPubMed
Gautier, D., Hersant, F., Mousis, O., & Lunine, J. I. 2001, Enrichments in volatiles in Jupiter: A new interpretation of the Galileo measurements., Astrophys. J. Lett., 550, L227L230 (Erratum 559, L183)CrossRefGoogle Scholar
Owen, T. C. & Encrenaz, T. 2003, Element abundances and isotope ratios in the giant planets and Titan, Sp. Sci. Rev., 106, 121138CrossRefGoogle Scholar
Atreya, S. K., Wong, M. H., Owen, T. C., Niemann, H. B., Mahaffy, P. R. 1997, Chemistry and clouds of the atmosphere of Jupiter: A Galileo perspective. Three Galileos: The Man, the Spacecraft, the Telescope, Barbieri, C. et al. , Eds., Kluwer Academic Publishers, 249 260Google Scholar
Showman, A. P. & Dowling, T. E. 2000, Nonlinear simulations of Jupiter's 5-micron hot spots., Science, 289, 7371740CrossRefGoogle ScholarPubMed
Gierasch, P. J. 2004, Stability of jets on Jupiter and Saturn, Icarus, 167(1), 212-219. Gierasch, P. J., Ingersoll, A. P., Banfield, D., Ewald, S. P., Helfenstein, P., Simon-Miller, A., Vasavada, A., Breneman, H. H., Senske, D. A., and the Galileo imaging team, 2000: Observation of moist convection in Jupiter's atmosphere, Nature, 403, 628629CrossRefGoogle Scholar
Busse, F. H. 1976, Simple model of convection in Jovian atmosphere, Icarus, 29 (2), 255260Google Scholar
Ingersoll, A. P. & Pollard, F. 1982, Motions in the interiors and atmospheres of Jupiter and Saturn: Scale analysis, anelastic equations, barotropic stability criterion, Icarus, 52, 6280CrossRefGoogle Scholar
Hill, T. W., Dessler, A. J. & Goertz, C. K. 1983, Magnetospheric models. Physics of the Jovian Magnetosphere, Dessler, A. J., Ed., Cambridge University Press, 353394.CrossRefGoogle Scholar
Cowley, S. W. H., Bunce, E. J., Stallard, T. S., et al. 2003, Jupiter's polar ionospheric flows: Theoretical interpretation, Geophys. Res. Lett., 30 (5), art. no. 1220CrossRefGoogle Scholar