Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T07:36:44.006Z Has data issue: false hasContentIssue false

The jet–disc connection in AGN

Published online by Cambridge University Press:  24 March 2015

Tullia Sbarrato
Affiliation:
INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, I–23807 Merate, Italy email: [email protected] Università dell'Insubria, Dipartimento di Scienza e Alta Tecnologia, Via Valleggio 11, I–22100 Como, Italy
Paolo Padovani
Affiliation:
ESO – European Southern Observatory, Karl–Schwarzschild–Strasse 2, D–85748 Garching bei München, Germany
Gabriele Ghisellini
Affiliation:
INAF – Osservatorio Astronomico di Brera, Via Bianchi 46, I–23807 Merate, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our latest results on the connection between the accretion rate and the power of relativistic jets. To this aim we use blazars, whose jet is pointing at us, with visible broad emission lines, along with broad lineless radio–galaxies. We trace the jet power with two proxies (gamma–ray and radio luminosities), while the broad emission lines are a direct measure of the accretion disc luminosity. We find a correlation between the broad emission line and the gamma–ray or luminosities in blazars, suggesting a direct tight connection between the jet and the accretion rate. Only extending our analysis to radio–galaxies, and using as jet tracer the radio luminosity, we are finally able to conclude that jetted AGN can accrete both through a radiatively efficient accretion disc and a hot accretion flow, depending on the accretion rate. We finally observe the transition between the two states among the family of jetted AGN.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Baldwin, J. A. & Netzer, H., 1978, ApJ, 226, 1Google Scholar
Buttiglione, S., Capetti, A., Celotti, A., et al., 2010, A&A, 509, 6Google Scholar
Dermer, C. D., 1995, ApJ, 446, L63Google Scholar
Ghisellini, G., Tavecchio, F., Chiaberge, M., 2005, A&A, 432, 401Google Scholar
Ghisellini, G., Tavecchio, F., Foschini, L., Ghirlanda, G., 2011, MNRAS, 414, 2674Google Scholar
Mahadevan, R., 1997, ApJ, 447, 585Google Scholar
Narayan, R., Garcia, M. R., McClintock, J. E., 1997, ApJ, 478, L79Google Scholar
Narayan, R. & Yi, I., 1994, ApJ, 428, L13Google Scholar
Sbarrato, T., Ghisellini, G., Maraschi, L., Colpi, M., 2012, MNRAS, 421, 1764Google Scholar
Sbarrato, T., Padovani, P., Ghisellini, G., 2014, MNRAS, 445, 81Google Scholar
Shakura, N. I. & Sunyaev, R. A., 1973, A&A, 24, 337Google Scholar
Sharma, P., Quataert, E., Hammet, G. H., Stone, J. M., 2007, ApJ, 667, 714Google Scholar
Shaw, M. S., Romani, R. W., Cotter, G., et al., 2012, ApJ, 748, 49Google Scholar
Shaw, M. S., Romani, R. W., Cotter, G., et al., 2013, ApJ, 764, 135Google Scholar
Smith, M. G., Carswell, R. F., Whelan, J. A. J., et al., 1981, MNRAS 195, 437Google Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803Google Scholar