Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T15:36:03.806Z Has data issue: false hasContentIssue false

Jet power in pre-planetary nebulae: Observations vs. theory

Published online by Cambridge University Press:  30 August 2012

Patrick J. Huggins*
Affiliation:
Physics Department, New York University, 4 Washington Place, New York NY 10003, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High velocity jets are among the most prominent features of a wide class of planetary nebulae, but their origins are not understood. Several different types of physical models have been suggested to power the jets, but there is no consensus or preferred scenario. We compare current theoretical ideas on jet formation with observations, using the best studied pre–planetary nebulae in millimeter CO, where the dynamical properties are best defined. In addition to the mass, velocity, momentum, and energy of the jets, the mass and energetics of the equatorial mass-loss that typically accompanies jet formation prove to be important diagnostics. Our integrated approach provides estimates for some key physical quantities – such as the binding energy of the envelope when the jets are launched – and allows testing of model features using correlations between parameters. Even with a relatively small sample of well-observed objects, we find that some specific scenarios for powering jets can be ruled out or rendered implausible, and others are promising at a quantitative level.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Alcolea, J., Neri, R., & Bujarrabal, V. 2007, A&A, 468, L41 Google Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J. & Sánchez Contreras, C. 2001, A&A, 377, 868 Google Scholar
Castro-Carrizo, A., Bujarrabal, V., Sánchez Contreras, C., Alcolea, J., & Neri, R. 2002, A&A, 386, 633 Google Scholar
Castro-Carrizo, A., Bujarrabal, V., Sánchez Contreras, C., Sahai, R., & Alcolea, J. 2005, A&A, 431, 979 Google Scholar
Cox, P., Lucas, R., Huggins, P. J., Forveille, T., Bachiller, R., Guilloteau, S., Maillard, J.-P., & Omont, A. 2000, A&A, 353, L25 Google Scholar
Hrivnak, B. J., Lu, W., Bohlender, D., Morris, S. C., Woodsworth, A. W., & Scarfe, C. D. 2011, ApJ, 734, 25 CrossRefGoogle Scholar
Huggins, P. J. 2007, ApJ, 663, 342 CrossRefGoogle Scholar
Knapp, G. R., Phillips, T. G., Leighton, R. B., Lo, K. Y., Wannier, P. G., Wootten, H. A., & Huggins, P. J. 1982, ApJ, 252, 616 CrossRefGoogle Scholar
Morris, M. 1987, PASP, 99, 1115 CrossRefGoogle Scholar
Nordhaus, J. & Blackman, E. G. 2006, MNRAS, 370, 2004 CrossRefGoogle Scholar
Olofsson, H. & Nyman, L.-Å. 1999, A&A, 347, 194 Google Scholar
Sahai, R., Young, K., Patel, N. A., Sánchez Contreras, C., & Morris, M. 2006, ApJ, 653, 1241 CrossRefGoogle Scholar
Sánchez Contreras, C., Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sargent, A. 2004, ApJ, 617, 1142 CrossRefGoogle Scholar
Sánchez Contreras, C., Bujarrabal, V., Castro-Carrizo, A., Alcolea, J., & Sargent, A. 2006, ApJ, 643, 945 CrossRefGoogle Scholar
Soker, N. & Livio, M. 1994, ApJ, 421, 219 CrossRefGoogle Scholar
Soker, N. & Rappaport, S. 2000, ApJ, 538, 241 CrossRefGoogle Scholar