Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-19T15:04:11.126Z Has data issue: false hasContentIssue false

Is the massive star cluster Westerlund 2 double? - A high resolution multi-band survey with the Hubble Space Telescope

Published online by Cambridge University Press:  31 March 2017

Peter Zeidler
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: pzeidler@ari.uni-heidelberg.de Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Antonella Nota
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA ESA, SRE Operations Devision
Elena Sabbi
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Eva K. Grebel
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: pzeidler@ari.uni-heidelberg.de
Monica Tosi
Affiliation:
INAF - Osservatorio Astronomico di Bologna
Alceste Z. Bonanos
Affiliation:
IAASARS, National Observatory of Athens, GR-15326 Penteli, Greece
Anna Pasquali
Affiliation:
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, 69120 Heidelberg, Germany email: pzeidler@ari.uni-heidelberg.de
Carol Christian
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Selma E. de Mink
Affiliation:
Astronomical Institute Anton Pannekoek, Amsterdam University, Science Park 904, 1098 XH, Amsterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Westerlund 2 (Wd2) is one of the most massive young star clusters known in the Milky Way. The close proximity (4.16 kpc) to the Sun, and the young age (2.0 Myr) allow us to study star formation in detail at a high spatial resolution. We present results from our recent deep multi-band survey in the optical and near-infrared obtained with the Hubble Space Telescope. We demonstrated that, as expected, the region is affected by significant differential reddening with a median value of E(BV)g = 1.87 mag. The distance was inferred from the dereddened color-magnitude diagrams using Padova isochrones. Analyzing the spatial distribution of stars we found that Wd2 consists of two sub-clumps, namely the main cluster of Westerlund 2 and a less well populated clump located to the North. We estimated the same age of 0.1–2.0 Myr for both sub-clumps, thus we conclude that they are likely coeval.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Ascenso, J., Alves, J., Beletsky, Y., & Lago, M. T. V. T. 2007, A&A, 466, 137 Google Scholar
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 CrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682 Google Scholar
Calzetti, D., Kinney, A. L., & Storchi-Bergmann, T. 1996, ApJ, 458, 132 Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245 CrossRefGoogle Scholar
Clark, J. S., Negueruela, I., Crowther, P. A., & Goodwin, S. P. 2005, A&A, 434, 949 Google Scholar
Dame, T. M. 2007, ApJ, 665, L163 Google Scholar
Dressel, L. 2012, Wide Field Camera 3 Instrument Handbook for Cycle 21 v. 5.0 (Baltimore: STScI)Google Scholar
Furukawa, N., Dawson, J. R., Ohama, A., et al. 2009, ApJ, 696, L115 Google Scholar
Gennaro, M., Brandner, W., Stolte, A., & Henning, T. 2011, MNRAS, 412, 2469 CrossRefGoogle Scholar
Gonzaga, S. & Biretta, J. 2010, in HST WFPC2 Data Handbook, v. 5.0, ed., Baltimore, STScI (Baltimore: STScI)Google Scholar
Kuhn, M. A., Feigelson, E. D., Getman, K. V., et al. 2014, ApJ, 787, 107 Google Scholar
Lim, B., Chun, M.-Y., Sung, H., et al. 2013, AJ, 145, 46 Google Scholar
Moffat, A. F. J., Shara, M. M., & Potter, M. 1991, AJ, 102, 642 Google Scholar
Osterbrock, D. E. & Bochkarev, N. G. 1989, Soviet Ast., 33, 694 Google Scholar
Pang, X., Grebel, E. K., Allison, R. J., et al. 2013, ApJ, 764, 73 CrossRefGoogle Scholar
Rauw, G., Manfroid, J., Gosset, E., et al. 2007, A&A, 463, 981 Google Scholar
Rauw, G., Sana, H., & Nazé, Y. 2011, A&A, 535, A40 Google Scholar
Rauw, G., De Becker, M., Nazé, Y., et al. 2004, A&A, 420, L9 Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523 Google Scholar
Rodgers, A. W., Campbell, C. T., & Whiteoak, J. B. 1960, MNRAS, 121, 103 Google Scholar
Sabbi, E., Lennon, D. J., Gieles, M., et al. 2012, ApJ, 754, L37 CrossRefGoogle Scholar
Sparke, L. S. & Gallagher, J. S. III 2007, Galaxies in the Universe: An Introduction (Cambridge University Press)CrossRefGoogle Scholar
Ubeda, et al. 2012, Advanced Camera for Surveys Instrument Handbook for Cycle 21 v. 12.0 (Baltimore: STScI)Google Scholar
Vargas Álvarez, C. A., Kobulnicky, H. A., Bradley, D. R., et al. 2013, AJ, 145, 125 Google Scholar
Walborn, N. R. & Blades, J. C. 1997, ApJS, 112, 457 CrossRefGoogle Scholar
Westerlund, B. 1961, Arkiv for Astronomi, 2, 419 Google Scholar
Zeidler, P., Sabbi, E., Nota, A., et al. 2015a, AJ, 150, 78 Google Scholar
Zeidler, P., Nota, A., Sabbi, E., et al. 2015b, in prep.Google Scholar