Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T11:09:28.467Z Has data issue: false hasContentIssue false

Investigating the origin of cyclical spectral variations in hot, massive stars

Published online by Cambridge University Press:  07 August 2014

Alexandre David-Uraz
Affiliation:
Queen's University, Canada
Gregg A. Wade
Affiliation:
RMC, Canada
Véronique Petit
Affiliation:
University of Delaware, USA
Asif ud-Doula
Affiliation:
Penn State University, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

OB stars are known to exhibit various types of wind variability, as detected in their ultraviolet spectra, amongst which are the ubiquitous discrete absorption components (DACs). These features have been associated with large-scale azimuthal structures extending from the base of the wind to its outer regions: corotating interaction regions (CIRs). There are several competing hypotheses as to which physical processes may perturb the star's surface and generate CIRs, including magnetic fields and non radial pulsations (NRPs), the subjects of this paper with a particular emphasis on the former. Although large-scale magnetic fields are ruled out, magnetic spots deserve further investigation, both on the observational and theoretical fronts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Cantiello, M. & Braithwaite, J. 2011, A&A, 534, A140Google Scholar
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157Google Scholar
Chené, A. N., Moffat, A. F. J., Cameron, C., Fahed, R., et al. 2011, ApJ, 735, 34Google Scholar
Cranmer, S. R. & Owocki, S. P. 1996, ApJ, 462, 469Google Scholar
David-Uraz, A., Moffat, A. F. J., Chené, A. N., Rowe, J. F., et al. 2012, MNRAS, 426, 1720Google Scholar
de Jong, J. A., Henrichs, H. F., Schrijvers, C., Gies, D. R., et al. 1999, A&A, 345, 172Google Scholar
Donati, J. F., Semel, M., Carter, B. D., Rees, D. E., & Cameron, A. C. 1997, MNRAS, 291, 658Google Scholar
Howarth, I. D. & Prinja, R. K. 1989, ApJS, 69, 527Google Scholar
Kaper, L. & Henrichs, H. F. 1994, Ap&SS, 221, 115Google Scholar
Kaper, L., Henrichs, H. F., Nichols, J. S., Snoek, L. C., et al. 1996, A&AS, 116, 257Google Scholar
Kochukhov, O. & Sudnik, N. 2013, A&A, 554, A93Google Scholar
Petit, V. & Wade, G. A. 2012, MNRAS, 420, 773CrossRefGoogle Scholar
Prinja, R. K. 1988, MNRAS, 231, 21CrossRefGoogle Scholar
Stibbs, D. W. N. 1950, MNRAS, 110, 395Google Scholar
Wade, G. A., Donati, J. F., Landstreet, J. D., & Shorlin, S. L. S. 2000, MNRAS, 313, 851CrossRefGoogle Scholar
Wade, G. A., the MiMeS Collaboration 2010, arXiv, 1012, 2925Google Scholar