Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T03:41:10.308Z Has data issue: false hasContentIssue false

Investigating the AGN activity and black hole masses in low surface brightness galaxies

Published online by Cambridge University Press:  07 March 2016

Smitha Subramanian
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore - 560034, India email: [email protected]
Ramya Sethuram
Affiliation:
Shanghai Astronomical Observatory, Shanghai, China
Mousumi Das
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore - 560034, India email: [email protected]
Koshy George
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore - 560034, India email: [email protected]
Sivarani Thirupathi
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore - 560034, India email: [email protected]
Tushar P. Prabhu
Affiliation:
Indian Institute of Astrophysics, 2nd Block, Koramangala, Bangalore - 560034, India email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an analysis of the optical nuclear spectra from the active galactic nuclei (AGN) in a sample of giant low surface brightness (GLSB) galaxies. GLSB galaxies are extreme late type spirals that are large, isolated and poorly evolved compared to regular spiral galaxies. Earlier studies have indicated that their nuclei have relatively low mass black holes. Using data from the Sloan Digital Sky Survey (SDSS), we selected a sample of 30 GLSB galaxies that showed broad Hα emission lines in their AGN spectra. In some galaxies such as UGC 6284, the broad component of Hα is more related to outflows rather than the black hole. One galaxy (UGC 6614) showed two broad components in Hα, one associated with the black hole and the other associated with an outflow event. We derived the nuclear black hole (BH) masses of 29 galaxies from their broad Hα parameters. We find that the nuclear BH masses lie in the range 105 – 107 M. The bulge stellar velocity dispersion σe was determined from the underlying stellar spectra. We compared our results with the existing BH mass - velocity dispersion (MBH–σe) correlations and found that the majority of our sample lie in the low BH mass regime and below the MBH–σe correlation. The effects of galaxy orientation in the measurement of σe and the increase of σe due to the effects of bar are probable reasons for the observed offset for some galaxies, but in many galaxies the offset is real. A possible explanation for the MBH–σe offset could be lack of mergers and accretion events in the history of these galaxies which leads to a lack of BH-bulge co-evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Baldwin, J. A., Phillips, M. M., & Terlevich, R., 1981, PASP, 93, 5CrossRefGoogle Scholar
Bothun, G., Impey, C., & McGaugh, S., 1997, PASP, 109, 745Google Scholar
Bothun, G. D., Schombert, J. M., Impey, C. D., Sprayberry, D., & McGaugh, S. S. 1993, AJ, 106, 530CrossRefGoogle Scholar
Cappellari, M., Emsellem, E., 2004, PASP, 116, 138Google Scholar
Ferrarese, L. & Merritt, D., 2000, ApJ, 539, L9Google Scholar
Gültekin, K., Richstone, D. O., Gebhardt, K.et al. 2009a, ApJ, 698, 198CrossRefGoogle Scholar
Heckman, Timothy M., Kauffmann, , Guinevere, , Brinchmann, , Jarle, , Charlot, , Stéphane, , Tremonti, , Christy, , White, , & Simon, D. M., 2004, ApJ, 613, 109Google Scholar
Impey, C. & Bothun, Greg, 1997, ARA&A, 35, 2671Google Scholar
Impey, C., Burkholder, V., & Sprayberry, D., 2001, AJ, 122, 2341Google Scholar
Impey, C. D., Sprayberry, D., Irwin, M. J., & Bothun, G. D., 1996, ApJS, 105, 209Google Scholar
Jorgensen, I., Franx, M., & Kjaergaard, P., 1995, MNRAS, 276, 1341Google Scholar
Kormendy, J. & Ho, L. C., 2013, ARA&A, 51, 511Google Scholar
McConnell, Nicholas J. & Ma, Chung-Pei, 2013, ApJ, 764, 184Google Scholar
Mei, L., Yuan, W., & Dong, X., 2009, Res. Astron. Astrophys., 9, 269Google Scholar
Morelli, L., Corsini, E. M., Pizzella, A., Dalla Bontá, E., Coccato, L., Méndez-Abreu, J., & Cesetti, M., 2012, MNRAS, 423, 962Google Scholar
Pizzella, A., Corsini, E. M., Dalla Bontà, E., Sarzi, M., Coccato, L., & Bertola, F., 2005, ApJ, 631, 785Google Scholar
Ramya, S., Prabhu, T. P., & Das, M., 2011, MNRAS, 418, 789Google Scholar
Reines, Amy E., Greene, Jenny E., & Geha, Marla, 2013, ApJ, 775, 116Google Scholar
Rosenbaum, S. D., Krusch, E., Bomans, D. J., & Dettmar, R.-J., 2009, A&A, 504, 807Google Scholar
Schombert, James M. & Bothun, Gregory D., 1988, AJ, 95, 1389CrossRefGoogle Scholar
Schombert, James M., Bothun, Gregory D., Schneider, Stephen E., & McGaugh, Stacy S., 1992, AJ, 103, 1107Google Scholar
Silk, Joseph & Rees, Martin J., 1998, A&A, 331, 1Google Scholar
Sprayberry, D., Impey, C. D., Bothun, G. D., & Irwin, M. J., 1995, AJ, 109, 558Google Scholar
Tremaine, S.et al., 2002, ApJ, 574, 740Google Scholar
Volonteri, Marta, 2010, A&ARv, 18, 279Google Scholar