Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T19:32:14.720Z Has data issue: false hasContentIssue false

Investigating accretion disk – radio jet coupling across the stellar mass scale

Published online by Cambridge University Press:  24 February 2011

James C. A. Miller-Jones
Affiliation:
ICRAR - Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia email: [email protected]
Gregory R. Sivakoff
Affiliation:
Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA email: [email protected], [email protected]
Diego Altamirano
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, the Netherlands email: [email protected], [email protected], [email protected]
Elmar G. Körding
Affiliation:
Université Paris Diderot and Service d'Astrophysique, UMR AIM, CEA Saclay, F-91191 Gif-sur-Yvette, France email: [email protected]
Hans A. Krimm
Affiliation:
NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA; and USRA, 10211 Wincopin Circle, Suite 500, Columbia, MD 21044, USA email: [email protected]
Dipankar Maitra
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA email: [email protected]
Ron A. Remillard
Affiliation:
MIT Kavli Institute for Astrophysics and Space Research, Building 37, 70 Vassar Street, Cambridge, MA 02139, USA email: [email protected]
David M. Russell
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, the Netherlands email: [email protected], [email protected], [email protected]
Valeriu Tudose
Affiliation:
Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, the Netherlands email: [email protected]
Vivek Dhawan
Affiliation:
NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801, USA email: [email protected], [email protected]
Rob P. Fender
Affiliation:
School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK email: [email protected]
Sebastian Heinz
Affiliation:
Astronomy Department, University of Wisconsin-Madison, 475. N. Charter St., Madison, WI 53706, USA email: [email protected]
Sera Markoff
Affiliation:
Astronomical Institute ‘Anton Pannekoek’, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, the Netherlands email: [email protected], [email protected], [email protected]
Simone Migliari
Affiliation:
European Space Astronomy Centre, Apartado/P.O. Box 78, Villanueva de la Canada, E-28691 Madrid, Spain email: [email protected]
Michael P. Rupen
Affiliation:
NRAO Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801, USA email: [email protected], [email protected]
Craig L. Sarazin
Affiliation:
Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904, USA email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Relationships between the X-ray and radio behavior of black hole X-ray binaries during outbursts have established a fundamental coupling between the accretion disks and radio jets in these systems. I begin by reviewing the prevailing paradigm for this disk-jet coupling, also highlighting what we know about similarities and differences with neutron star and white dwarf binaries. Until recently, this paradigm had not been directly tested with dedicated high-angular resolution radio imaging over entire outbursts. Moreover, such high-resolution monitoring campaigns had not previously targetted outbursts in which the compact object was either a neutron star or a white dwarf. To address this issue, we have embarked on the Jet Acceleration and Collimation Probe Of Transient X-Ray Binaries (JACPOT XRB) project, which aims to use high angular resolution observations to compare disk-jet coupling across the stellar mass scale, with the goal of probing the importance of the depth of the gravitational potential well, the stellar surface and the stellar magnetic field, on jet formation. Our team has recently concluded its first monitoring series, including (E)VLA, VLBA, X-ray, optical, and near-infrared observations of entire outbursts of the black hole candidate H 1743-322, the neutron star system Aquila X-1, and the white dwarf system SS Cyg. Here I present preliminary results from this work, largely confirming the current paradigm, but highlighting some intriguing new behavior, and suggesting a possible difference in the jet formation process between neutron star and black hole systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Chen, Y., Zhang, S., Torres, D., Wang, J., Li, J., Li, T., & Qu, J. 2010, A&A, accepted (arXiv:1008.3059)Google Scholar
Dhawan, V., Mirabel, I. F., & Rodríguez, L. F. 2000, ApJ, 543, 373CrossRefGoogle Scholar
Fender, R. P., Belloni, T. M., & Gallo, E. 2004, MNRAS, 355, 1105CrossRefGoogle Scholar
Fender, R. P., Homan, J. & Belloni, T. M. 2009, MNRAS, 396, 1370CrossRefGoogle Scholar
Harrison, T. E., McNamara, B. J., Szkody, P., McArthur, B. E., Benedict, G. F., Klemola, A. R., & Gilliland, R. L. 1999, ApJ, 515, L93CrossRefGoogle Scholar
Harrison, T. E., McNamara, B. J., Szkody, P., & Gilliland, R. L. 2000, AJ, 120, 2649CrossRefGoogle Scholar
Körding, E., Rupen, M. P., Knigge, C., Fender, R. P., Dhawan, V., Templeton, M., & Muxlow, T. W. B. 2008, Science, 320, 1318CrossRefGoogle Scholar
Maitra, D. & Bailyn, C. D. 2004, ApJ, 608, 444CrossRefGoogle Scholar
Migliari, S. & Fender, R. P. 2006, MNRAS, 366, 79CrossRefGoogle Scholar
Miller-Jones, J. C. A., Sivakoff, G. R., Altamirano, D., Tudose, V., Migliari, S., Dhawan, V., Fender, R. P., Garret, M. A., Heinz, S., Körding, E. G., Krimm, H. A., Linares, M., Maitra, D., Markoff, S., Paragi, Z., Remillard, R. A., Rupen, M. P., Rushton, A., Russell, D. M., Sarazin, C. L., & Spencer, R. E. 2010, ApJ, 716, L109CrossRefGoogle Scholar
Mirabel, I. F. & Rodríguez, L. F. 1994, Nature, 371, 46CrossRefGoogle Scholar
Motta, S., Muñoz-Darias, T., & Belloni, T. 2010, MNRAS, accepted (arXiv:1006.4773)Google Scholar
Schreiber, M. R. & Lasota, J.-P., 2007, A&A, 473, 897Google Scholar
Stirling, A. M., Spencer, R. E., de la Force, C. J., Garrett, M. A., Fender, R. P., & Ogley, R. N. 2001, MNRAS, 327, 1273CrossRefGoogle Scholar
Tudose, V., Fender, R. P., Linares, M., Maitra, D. & van der Klis, M. 2009, MNRAS, 400, 2111CrossRefGoogle Scholar
Wheatley, P. J., Mauche, C. W., & Mattei, J. A. 2003, MNRAS, 345, 49CrossRefGoogle Scholar
Zacharias, N., et al. 2010, AJ, 139, 2184CrossRefGoogle Scholar