Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T21:39:06.894Z Has data issue: false hasContentIssue false

Interplanetary conditions: lessons from this minimum

Published online by Cambridge University Press:  05 July 2012

J. Luhmann
Affiliation:
Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720, USA
C. O. Lee
Affiliation:
Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720, USA
P. Riley
Affiliation:
Predictive Science Inc., 9990 Mesa Rim Rd., San Diego, CA 92121USA
L. K. Jian
Affiliation:
Inst. of Geophysics and Planetary Physics, Slichter Hall, UCLA, Los Angeles, CA 90095, USA
C. T. Russell
Affiliation:
Inst. of Geophysics and Planetary Physics, Slichter Hall, UCLA, Los Angeles, CA 90095, USA
G. Petrie
Affiliation:
National Solar Observatory, 950 N. Cherry Ave., Tucson, AZ 85719, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interplanetary conditions during the Cycle 23-24 minimum have attracted attention because they are noticeably different than those during other minima of the space age, exhibiting more solar wind stream interaction structures in addition to reduced mass fluxes and low magnetic field strengths. In this study we consider the differences in the solar wind source regions by applying Potential Field Source Surface models of the coronal magnetic field. In particular, we consider the large scale coronal field geometry that organizes the open field region locations and sizes, and the appearance of the helmet streamer structure that is another determiner of solar wind properties. The recent cycle minimum had an extraordinarily long entry phase (the decline of Cycle 23) that made it difficult to identify when the actual miminum arrived. In particular, the late 23rd cycle was characterized by diminishing photospheric fields and complex coronal structures that took several extra years to simplify to its traditional dipolar solar minimum state. The nearly dipolar phase, when it arrived, had a duration somewhat shorter than those of the previous cycles. The fact that the corona maintained an appearance more like a solar maximum corona through most of the quiet transitional phase between Cycles 23 and 24 gave the impression of a much more complicated solar minimum solar wind structure in spite of the weaknesses of the mass flux and interplanetary field. The extent to which the Cycle 23-24 transition will affect Cycle 24, and/or represents what happens during weak cycles in general, remains to be seen.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abramenko, V., Yurchyshyn, V., Linker, J., Mikic, Z., Luhmann, J. G., & Lee, C. O. 2010, ApJ, 712, 813CrossRefGoogle Scholar
Cane, H. V., Wibberenz, G., Richardson, I. G., & von Rosenvinge, T. T. 1999, Geophys. Res. Lett., 26, 565CrossRefGoogle Scholar
Dikpati, M. 2011, Space Sci. Rev., 143, DOI 10.1007/s11214-011-9790-zGoogle Scholar
Gibson, S. E. et al. , 1999, ApJ, 520, 871CrossRefGoogle Scholar
Hoeksema, J. T. 1984, Structure and evolution of the large scale solar and heliospheric magnetic fields, Ph.D. thesis, Stanford Univ., Stanford, Calif.Google Scholar
Hundhausen, A. J. 1979, Rev. Geophys., 17, 2034CrossRefGoogle Scholar
Jian, L. K., Russell, C. T., & Luhmann, J. G. 2011, Sol. Phys., 274, 321CrossRefGoogle Scholar
Kasper, J., Stevens, M. L., Lazarus, A. J., Steinberg, J. T., & Ogilvie, K. W. 2007, ApJ, 660, 901CrossRefGoogle Scholar
Lee, C. O., Luhmann, J. G., Hoeksema, J. T., Sun, X., Arge, C. N., & dePater, I. 2011, Sol. Phys., 269, 367CrossRefGoogle Scholar
Lee, C. O., Luhmann, J. G., Zhao, X. P., Li, Y., Riley, P., Arge, C. N., Russell, C. T., & dePater, I. 2009, Sol Phys., 256, 345CrossRefGoogle Scholar
Levine, R. H., Altschuler, M. D., Harvey, J. W., & Jackson, B. V. 1977, ApJ, 215, 636CrossRefGoogle Scholar
Linker, J. A., Mikic, Z., Biesecker, D. A., Forsyth, R. J., Gibson, S. E., Lazarus, A. J., Lecinski, A., Riley, P., Szabo, A., & Thompson, B. J. 1999, J. Geophys. Res., 104, 9809Google Scholar
Luhmann, J. G., Li, Y., Arge, C. N., Galvin, A. B., Simunac, K., Russell, C. T., Howard, R. A., & Petrie, G. 2009, Sol. Phys., 256, 285CrossRefGoogle Scholar
Luhmann, J. G., Li, Y., & Zhao, X. P., Yashiro, S. 2003, Sol. Phys., 213, 367CrossRefGoogle Scholar
Luhmann, J. G., Li, Y., Arge, C. N., Gazis, P. R., & Ulrich, R. 2002, J. Geophys. Res., 107 (A8), 1154Google Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., Goldstein, B. E., Gosling, J. T., Schwadron, N. A., & Skoug, R. M. 2008, Geophys. Res. Lett., 35, L18103Google Scholar
Penn, M. & Livingston, W. 2010, eprint arXiv:1009.0784Google Scholar
Riley, P. & Luhmann, J. G. 2012, Sol. Phys., 277, 355CrossRefGoogle Scholar
Schwadron, N. A., Boyd, A. J., Kozarev, K., Golightly, M., Spence, H., Townsend, L. W., & Owens, M. 2010, Space Weather, 8, S00E04Google Scholar
Smith, E. J. & Balogh, A. 2008, Geophys. Res. Lett., 35, L22103Google Scholar
Solomon, S. C., Qian, L., Didkovsky, L. V., Viereck, R. A., & Woods, T. N. 2011, J. Geophys. Res., 116, A00H07Google Scholar
Wang, Y. M. 2012, Space Sci. Rev., in pressGoogle Scholar
Wang, Y. M., Robbrecht, E., & Sheeley, N. R. 2009, ApJ, 707, 1372CrossRefGoogle Scholar
Zhao, X. P. & Hundhausen, A. J. 1981, J. Geophys. Res., 86, 5423CrossRefGoogle Scholar