Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T18:42:18.054Z Has data issue: false hasContentIssue false

The intergalactic medium in the cosmic web

Published online by Cambridge University Press:  12 October 2016

Nicolas Tejos*
Affiliation:
Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The intergalactic medium (IGM) accounts for ≳ 90% of baryons at all epochs and yet its three dimensional distribution in the cosmic web remains mostly unknown. This is so because the only feasible way to observe the bulk of the IGM is through intervening absorption line systems in the spectra of bright background sources, which limits its characterization to being one-dimensional. Still, an averaged three dimensional picture can be obtained by combining and cross-matching multiple one-dimensional IGM information with three-dimensional galaxy surveys. Here, we present our recent and current efforts to map and characterize the IGM in the cosmic web using galaxies as tracers of the underlying mass distribution. In particular, we summarize our results on: (i) IGM around star-forming and non-star-forming galaxies; (ii) IGM within and around galaxy voids; and (iii) IGM in intercluster filaments. With these datasets, we can directly test the modern paradigm of structure formation and evolution of baryonic matter in the Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abraham, R. G., Glazebrook, K., McCarthy, P. J., et al. 2004, AJ, 127, 2455 Google Scholar
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543 Google Scholar
Bond, J. R., Kofman, L., & Pogosyan, D. 1996, Nature, 380, 603 CrossRefGoogle Scholar
Cen, R. & Ostriker, J. P. 1999, ApJ, 514, 1 Google Scholar
Chen, H.-W., Lanzetta, K. M., Webb, J. K., & Barcons, X. 1998, ApJ, 498, 77 Google Scholar
Chen, H.-W., Prochaska, J. X., Weiner, B. J., et al. 2005, ApJ (Letters), 629, L25 Google Scholar
Chen, H.-W. & Mulchaey, J. S. 2009, ApJ, 701, 1219 Google Scholar
Colberg, J. M., Krughoff, K. S., & Connolly, A. J. 2005, MNRAS, 359, 272 Google Scholar
Colless, M., Dalton, G., Maddox, S., et al. 2001, MNRAS, 328, 1039 Google Scholar
Crain, R. A., Theuns, T., Dall Vecchia, C., et al. 2009, MNRAS, 399, 1773 Google Scholar
Danforth, C. W. & Shull, J. M. 2008, ApJ, 679, 194 Google Scholar
Davé, R., Cen, R., Ostriker, J. P., et al. 2001, ApJ, 552, 473 Google Scholar
Dressler, A. 1980, ApJ, 236, 351 Google Scholar
Ford, A. B., Davé, R., Oppenheimer, B. D., et al. 2014, MNRAS, 444, 1260 Google Scholar
Fukugita, M., Hogan, C. J., & Peebles, P. J. E. 1998, ApJ, 503, 518 Google Scholar
González, R. E. & Padilla, N. D. 2010, MNRAS, 407, 1449 Google Scholar
Hao, J., McKay, T. A., Koester, B. P., et al. 2010, ApJS, 191, 254 Google Scholar
Lanzetta, K. M., Bowen, D. V., Tytler, D., & Webb, J. K. 1995, ApJ, 442, 538 Google Scholar
Le Fèvre, O., Cassata, P., Cucciati, O., et al. 2013, A&A, 559, A14 Google Scholar
Morris, S. L., Weymann, R. J., Dressler, A., et al. 1993, ApJ, 419, 524 Google Scholar
Nadathur, S. & Hotchkiss, S. 2014, MNRAS, 440, 1248 Google Scholar
Pan, D. C., Vogeley, M. S., Hoyle, F., Choi, Y.-Y., & Park, C. 2012, MNRAS, 421, 926 Google Scholar
Prochaska, J. X., Weiner, B., Chen, H.-W., Mulchaey, J., & Cooksey, K. 2011, ApJ, 740, 91 Google Scholar
Ricciardelli, E., Quilis, V., & Planelles, S. 2013, MNRAS, 434, 1192 Google Scholar
Richter, P., Savage, B. D., Sembach, K. R., & Tripp, T. M. 2006, A&A, 445, 827 Google Scholar
Ryan-Weber, E. V. 2006, MNRAS, 367, 1251 Google Scholar
Rykoff, E. S., Rozo, E., Busha, M. T., et al. 2014, ApJ, 785, 104 Google Scholar
Shone, A. M., Morris, S. L., Crighton, N., & Wilman, R. J. 2010, MNRAS, 402, 2520 Google Scholar
Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, ApJ, 759, 23 Google Scholar
Skibba, R. A., Bamford, S. P., Nichol, R. C., et al. 2009, MNRAS, 399, 966 Google Scholar
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137 Google Scholar
Sutter, P. M., Lavaux, G., Wandelt, B. D., & Weinberg, D. H. 2012, ApJ, 761, 44 Google Scholar
Tejos, N., Morris, S. L., Crighton, N. H. M., et al. 2012, MNRAS, 425, 245 Google Scholar
Tejos, N., Morris, S. L., Finn, C. W., et al. 2014, MNRAS, 437, 2017 Google Scholar
Tempel, E., Stoica, R. S., Martínez, V. J., et al. 2014, MNRAS, 438, 3465 Google Scholar
Tripp, T. M., Lu, L., & Savage, B. D. 1998, ApJ, 508, 200 Google Scholar
Tumlinson, J., Thom, C., Werk, J. K., et al. 2011, Science, 334, 948 Google Scholar
Way, M. J., Gazis, P. R., & Scargle, J. D. 2014, arXiv:1406.6111Google Scholar
Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8 Google Scholar
Wiersma, R. P. C., Schaye, J., & Theuns, T. 2011, MNRAS, 415, 353 Google Scholar
Wilman, R. J., Morris, S. L., Jannuzi, B. T., Davé, R., & Shone, A. M. 2007, MNRAS, 375, 735 Google Scholar