Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T18:32:38.741Z Has data issue: false hasContentIssue false

Intensity Mapping Foreground Cleaning with Generalized Needlet Internal Linear Combination

Published online by Cambridge University Press:  08 May 2018

L. C. Olivari
Affiliation:
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics & Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. email: [email protected]
M. Remazeilles
Affiliation:
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics & Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. email: [email protected]
C. Dickinson
Affiliation:
Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics & Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intensity mapping (IM) is a new observational technique to survey the large-scale structure of matter using spectral emission lines. IM observations are contaminated by instrumental noise and astrophysical foregrounds. The foregrounds are at least three orders of magnitude larger than the searched signals. In this work, we apply the Generalized Needlet Internal Linear Combination (GNILC) method to subtract radio foregrounds and to recover the cosmological HI and CO signals within the IM context. For the HI IM case, we find that GNILC can reconstruct the HI plus noise power spectra with 7.0% accuracy for z = 0.13 − 0.48 (960 − 1260 MHz) and ℓ ≲ 400, while for the CO IM case, we find that it can reconstruct the CO plus noise power spectra with 6.7% accuracy for z = 2.4 − 3.4 (26 − 34 GHz) and ℓ ≲ 3000.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Battye, R. A., Browne, I. W. A., Dickinson, C., Heron, G., Maffei, B., & Pourtsidou, A., 2013, MNRAS, 434, 1239Google Scholar
Condon, J. J. & Ransom, S. M. 2016, Essential Radio Astronomy, Princeton University PressGoogle Scholar
Fonseca, J., Silva, M. B., Santos, M. G., & Cooray, A., 2017, MNRAS, 464, 1948Google Scholar
Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M., 2005, ApJ, 622, 759Google Scholar
Ichiki, K. 2014, Progress of Theoretical and Experimental Physics, 06B109Google Scholar
Kovetz, E. D. et al. 2017, Submitted to Physics Reports [arXiv: 1709.09066]Google Scholar
Li, T. Y., Wechsler, R. H., Devaraj, K., & Church, S. E., 2016, ApJ, 817, 169Google Scholar
Olivari, L. C., Remazeilles, M., Dickinson, C., 2016, MNRAS, 456, 2749CrossRefGoogle Scholar
Olivari, L. C., Dickinson, C., Battye, R. A., Ma, Y.-Z., Costa, A. A., Remazeilles, M., & Harper, S., 2018a, MNRAS, 473, 4242Google Scholar
Olivari, L. C., et al. 2018b, in PreparationGoogle Scholar
Planck Collaboration et al., 2016, A&A, 596, A109Google Scholar
Remazeilles, M., Delabrouille, J., & Cardoso, J.-F, 2011, MNRAS, 418, 467CrossRefGoogle Scholar
Wilkinson, P. N. 1991, in Astronomical Society of the Pacific Conference Series, Vol. 19, IAU Colloq. 131: Radio Interferometry. Theory, Techniques, and Applications, 428Google Scholar