Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:52:08.413Z Has data issue: false hasContentIssue false

Instabilities and mixing in stellar radiation zones

Published online by Cambridge University Press:  01 April 2008

Jean-Paul Zahn*
Affiliation:
LUTH, Observatoire de Paris, 92195 Meudon, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The standard model of stellar structure is unable to account for various observational facts, and there is now a large consensus that some ‘extra mixing’ must occur in the radiation zones. The possible causes for such mixing are briefly reviewed. The most efficient among them is probably the shear-turbulence generated by the differential rotation, which itself results from the transport of angular momentum that can be mediated through the large-scale circulation induced by structural adjustments or by the applied torques (stellar wind, accretion, tides). In solar-type stars this angular momentum transport is ensured mainly by internal gravity waves that are excited at the boundary with convection zones. Another cause of mixing manifests itself in the red giant phase, namely the thermohaline instability due to an inversion of the molecular weight gradient. The implementation of these processes in stellar evolution codes is giving rise to a new generation of stellar models, which are in much better agreement with the observational constraints.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Balachandran, S. C. 2002, Highlights of Astronomy 12, 276CrossRefGoogle Scholar
Balachandran, S. C. & Bell, R. A. 1997, BAAS, 29, 1325Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature 431, 819Google Scholar
Brun, A. S., Turck-Chièze, S., & Zahn, J.-P. 1999, ApJ 525, 1032Google Scholar
Brun, A. S. & Zahn, J.-P. 2006, A&A 457, 665Google Scholar
Busse, F. H. 1982, ApJ 259, 759CrossRefGoogle Scholar
Chaboyer, B., Demarque, P., & Pinsonneault, M. H. 1995, ApJ 441, 865Google Scholar
Chaboyer, B. & Zahn, J.-P. 1992, A&A 253, 173Google Scholar
Charbonneau, P. & MacGregor, K. B. 1993, ApJ 417, 762CrossRefGoogle Scholar
Charbonnel, C. & Palacios, A. 2004, IAU Symp. 215, 440Google Scholar
Charbonnel, C. & Talon, S. 1999, A&A 351, 635Google Scholar
Charbonnel, C. & Talon, S. 2005, Science 309, 2189Google Scholar
Charbonnel, C. & Zahn, J.-P. 2007, A&A 467, L15Google Scholar
Decressin, T., Mathis, S., Palacios, A., Siess, L., Talon, S., Charbonnel, C., & Zahn, J.-P. 2008, A&A (submitted)Google Scholar
Deliyannis, C, Demarque, P., & Kawaler, S. 1990, ApJS 73, 21Google Scholar
Dudis, J. J. 1974, J. Fluid Mech. 64, 65CrossRefGoogle Scholar
Eddington, A. S. 1926, Observatory 48, 73Google Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2006, Science 314, 1580CrossRefGoogle Scholar
Ferraro, V. C. A. 1937, MNRAS 97, 458Google Scholar
Forgács-Dajka, E. 2004, A&A 413, 1143Google Scholar
Forgács-Dajka, E. & Petrovay, K. 2002, A&A 389, 629Google Scholar
Garaud, P. 2002, MNRAS 329, 1Google Scholar
Gough, D. O. & McIntyre, M. E. 1998, Nat 394, 755Google Scholar
Herrero, A., Kudritski, R. P., Vilchez, J. M. et al. 1992, A&A 261, 209Google Scholar
Herrero, A., Puls, J., & Villamariz, L. R. 2000, A&A 354, 193Google Scholar
Korn, A. J., Grundahl, F., Rochard, O., Barklem, P. S., Mashonkina, L., Collet, R., Piskunov, N., & Gustavsson, B. 2006, Nat 442, 657Google Scholar
Lignières, F., Califano, F., & Mangeney, A. 1999, A&A 349, 1027Google Scholar
Maeder, A. 2003, A&A 399, 263Google Scholar
Maeder, A. & Meynet, G. 2000, ARA&A 38, 143Google Scholar
Maeder, A. & Zahn, J.-P. 1998, A&A 334, 1000Google Scholar
Mathis, S., Palacios, A., & Zahn, J.-P. 2004, A&A 425, 243Google Scholar
Mathis, S. & Zahn, J.-P. 2004, A&A 425, 229Google Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A 440, 653Google Scholar
Matias, J. & Zahn, J.-P. 1998, Sounding Solar and Stellar Interiors, IAU Symp. 181, (ed. Provost, J. & Schmider, F.-X.) poster vol. p. 103Google Scholar
McIntyre, M. E. 1994, The Solar Engine and its Influence on the Terrestrial Atmosphere and Climate (NATO ASI Subseries I, Global Environmental Change) 25, 293 (Cambridge Univ. Press), p. 557Google Scholar
Mestel, L. 1953, MNRAS 113, 716CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 1997, A&A 321, 465Google Scholar
Meynet, G. & Maeder, A. 2000, A&A 361, 101Google Scholar
Michaud, G. 1970, ApJ 160, 641Google Scholar
Michaud, G., Charland, Y., Vauclair, S., & Vauclair, G. 1976, ApJ 210, 447Google Scholar
Pinsonneault, M. 1997, ARA&A 35, 557Google Scholar
Pinsonneault, M., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ 338, 424Google Scholar
Press, W. H. 1981, ApJ 245, 286Google Scholar
Proffitt, C. R. & Michaud, G. 1991, ApJ 371, 584CrossRefGoogle Scholar
Richard, D. & Zahn, J.-P. 1999, A&A 347, 734Google Scholar
Richard, O., Michaud, G., & Richer, J. 2002, ApJ 568, 979Google Scholar
Schatzman, E. 1962, Ann. Ap 25, 18Google Scholar
Schatzman, E. 1993, A&A 279, 431Google Scholar
Schatzman, E., Zahn, J.-P., & Morel, P. 2000, A&A 364, 876Google Scholar
Spiegel, E. A. & Zahn, J.-P. 1992, A&A 265, 106Google Scholar
Spite, F. & Spite, M. 1922, A&A 115, 357Google Scholar
Stern, M. E., 1960, Tellus, 12, 172Google Scholar
Sweet, P. A. 1950, MNRAS 110, 548Google Scholar
Talon, S. & Charbonnel, C. 2003, A&A 405, 1025Google Scholar
Talon, S. & Charbonnel, C. 2004, A&A 418, 1051Google Scholar
Talon, S. & Charbonnel, C. 2005, A&A 440, 981Google Scholar
Talon, S., Kumar, P., & Zahn, J.-P. 2002, ApJ 574L, 175Google Scholar
Talon, S. & Zahn, J.-P. 1997, A&A 317, 749Google Scholar
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A 322, 209Google Scholar
Théado, S. & Vauclair, S. 2001, A&A 375, 70Google Scholar
Townsend, A. A. 1958, J. Fluid Mech. 4, 361CrossRefGoogle Scholar
Ulrich, R. K., 1972, ApJ, 172, 165CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Michaud, G. 1978, ApJ 223, 920CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Pamjatnikh, A. 1974, A&A 31, 63Google Scholar
Vauclair, S. 1999, A&A 351, 973Google Scholar
Vauclair, S. 2004, ApJ 605, 874Google Scholar
Vitense, E. 1953, Z. Astrophys. 32, 135Google Scholar
Vogt, H. 1925, Astron. Nachr. 223, 229Google Scholar
Von Zeipel, H. 1924, MNRAS 84, 665CrossRefGoogle Scholar
Zahn, J.-P. 1974, Stellar Instability and Evolution, IAU Symp. 59, p. 185Google Scholar
Zahn, J.-P. 1975, Mém. Soc. Roy. Sci. Liège 6 série, 8, 31Google Scholar
Zahn, J.-P. 1991, A&A 252, 179Google Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar
Zahn, J.-P. 1994, A&A 288, 829Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A 475, 145Google Scholar