Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T16:30:53.808Z Has data issue: false hasContentIssue false

The in-situ manifestation of solar prominence material

Published online by Cambridge University Press:  06 January 2014

Susan T. Lepri
Affiliation:
Dept. of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143 email: [email protected], [email protected], [email protected], [email protected]
Thomas H. Zurbuchen
Affiliation:
Dept. of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143 email: [email protected], [email protected], [email protected], [email protected]
Jacob R. Gruesbeck
Affiliation:
Dept. of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143 email: [email protected], [email protected], [email protected], [email protected]
Jason A. Gilbert
Affiliation:
Dept. of Atmospheric, Oceanic and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143 email: [email protected], [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Coronal mass ejections observed in the corona exhibit a three-part structure, with a leading bright front indicating dense plasma, a low density cavity thought to be a signature of the embedded magnetic flux rope, and the high density core likely containing cold, prominence material. When observed in-situ, as Interplanetary CMEs (or ICMEs), the presence of all three of these signatures remains elusive, with the prominence material rarely observed. We report on a comprehensive and long-term search for prominence material inside ICMEs as observed by the Solar Wind Ion Composition Spectrometer on the Advanced Composition Explorer. Using a novel data analysis process, we are able to identify traces of low charge state plasma created during prominence eruptions associated with ICMEs. We find that the likelihood of occurrence of cold material in the heliosphere is vastly lower than that observed in the corona but that conditions during the eruption do allow low charge ions to make it into the solar wind, preserving their expansion history. We discuss the implications of these findings.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Antiochos, S. K., DeVore, C. R., & Klimchuk, J. A. 1999, Astrophysical Journal, 510, 485Google Scholar
Burlaga, L., et al. 1998, Journal of Geophysical Research, 103, 277Google Scholar
Gilbert, J. A., Lepri, S. T., Landi, E., & Zurbuchen, T. H. 2012, Astrophysical Journal, 751, 20Google Scholar
Gloeckler, G., et al. 1998, Space Science Reviews, 86, 497Google Scholar
Gloeckler, G., et al. 1999, Geophysical Research Letters, 26, 157Google Scholar
Gopalswamy, N., Shimojo, M., Lu, W., Yashiro, S., Shibasaki, K., & Howard, R. A. 2003, Astrophysical Journal, 586, 562Google Scholar
Gosling, J. T., Hildner, E., MacQueen, R. M., et al. 1974, Journal of Geophysical Research, 79, 4581Google Scholar
Gruesbeck, J. R., Lepri, S. T., & Zurbuchen, T. H. 2012, Astrophysical Journal, 760, 141Google Scholar
Gruesbeck, J. R., Lepri, S. T., Zurbuchen, T. H., & Antiochos, S. K. 2011, Astrophysical Journal, 730, 103Google Scholar
Hefti, S., et al. 1998, Journal of Geophysical Research, 103, 29697Google Scholar
Henke, T., Woch, J., Schwenn, R., Mall, U., Gloeckler, G., von Steiger, R., Forsyth, R. J., & Balogh, A. 2001, Journal of Geophysical Research, 106, 10597Google Scholar
Howard, R. A.et al., Observations of CMEs from SOHO/LASCO, in Coronal Mass Ejections edited by Crooker, N., Joselyn, J.-A., and Feynman, Joan, pp. 1726, Geophysical Monograph 99, Washington, DC., 1997Google Scholar
Karpen, J. T. & Antiochos, S. K. 2008, Astrophysical Journal, 676, 658CrossRefGoogle Scholar
Klimchuk, J. A. 2001, Space Weather (Geophysical Monograph 125), ed. Song, P., Singer, H., Siscoe, G. (Washington: Am. Geophys. Un.), 143 (2001), 125, 143Google Scholar
Lepri, S. T., Zurbuchen, T. H., Fisk, L. A., Richardson, I. G., Cane, H. V., & Gloeckler, G. 2001, Journal of Geophysical Research, 106, 29231Google Scholar
Lepri, S. T. & Zurbuchen, T. H. 2004, Journal of Geophysical Research (Space Physics), 109, 1112Google Scholar
Lepri, S. T. & Zurbuchen, T. H. 2010, Astrophysical Journall, 723, L22Google Scholar
Low, B. C. 1994, Solar Dynamic Phenomena and Solar Wind Consequences, the Third SOHO Workshop, 373, 123Google Scholar
Lynch, B. J., Antiochos, S. K., MacNeice, P. J., Zurbuchen, T. H., & Fisk, L. A. 2004, Astrophysical Journal, 617, 589Google Scholar
Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., & Ross, C. L. 1979, Solar Physics, 61, 201Google Scholar
Rakowski, C. E., Laming, J. M., & Lepri, S. T. 2007, Astrophysical Journal, 667, 602CrossRefGoogle Scholar
Raymond, J. C. 2002, From Solar Min to Max: Half a Solar Cycle with SOHO, 508, 421Google Scholar
Reinard, A. 2005, Astrophysical Journal, 620, 501Google Scholar
Richardson, I. G. & Cane, H. V. 2004, Journal of Geophysical Research (Space Physics), 109, 9104Google Scholar
Richardson, I. G. & Cane, H. V. 2010, American Institute of Physics Conference Series, 1216, 683Google Scholar
Riley, P., Lionello, R., Mikić, Z., & Linker, J. 2008, Astrophysical Journal, 672, 1221Google Scholar
Schwenn, R., Rosenbauer, H., & Muehlhaeuser, K.-H. 1980, Geophysical Research Letters, 7, 201Google Scholar
Skoug, R. M., et al. 1999, Geophysical Research Letters, 26, 161Google Scholar
von Steiger, R., et al. 2000, Journal of Geophysical Research, 105, 27217.Google Scholar
Webb, D. F. & Howard, R. A. 1994, Journal of Geophysical Research, 99, 4201CrossRefGoogle Scholar
Webb, D. F. & Hundhausen, A. J. 1987, Solar Physics, 108, 383Google Scholar
Zurbuchen, T. H. & Richardson, I. G. 2006, Space Science Reviews, 123, 31Google Scholar
Zwickl, R. D., Asbridge, J. R., Bame, S. J., Feldman, W. C., & Gosling, J. T. 1982, Journal of Geophysical Research, 87, 7379Google Scholar