Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T17:31:10.380Z Has data issue: false hasContentIssue false

Insights on molecular cloud structure

Published online by Cambridge University Press:  27 April 2011

João Alves
Affiliation:
University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria email: [email protected]
Marco Lombardi
Affiliation:
ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany University of Milan, Department of Physics, via Celoria 16, I-20133 Milan, Italy
Charles Lada
Affiliation:
Harvard-Smithsonian Center for Astrophysics, MS42, 60 Garden St., Cambridge, MA 02138
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form in the densest regions of clouds of cold molecular hydrogen. Measuring structure in these clouds is far from trivial as 99% of the mass of a molecular cloud is inaccessible to direct observation. Over the last decade we have been developing an alternative, more robust density tracer technique based on dust extinction measurements towards background starlight. The new technique does not suffer from the complications plaguing the more conventional molecular line and dust emission techniques, and when used with these can provide unique views on cloud chemistry and dust grain properties in molecular clouds. In this brief communication we summarize the main results achieved so far using this technique.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Alves, J., Lada, C. J., Lada, E. A., Kenyon, S. J. & Phelps, R. 1998, ApJ, 506, 292CrossRefGoogle Scholar
Alves, J., Lombardi, M. & Lada, C. J. 2007, A&A, 462, L17Google Scholar
Alves, J. F., Lada, C. J. & Lada, E. A. 2001, Nat, 409, 159CrossRefGoogle Scholar
Froebrich, D. & Rowles, J. 2010, MNRAS, 406, 1350Google Scholar
Goodman, A. A., Pineda, J. E. & Schnee, S. L. 2009, ApJ, 692, 91CrossRefGoogle Scholar
Kainulainen, J., Beuther, H., Henning, T. & Plume, R. 2009, A&A, 508, L35Google Scholar
Lada, C. J., Lada, E. A., Clemens, D. P. & Bally, J. 1994, ApJ, 429, 694CrossRefGoogle Scholar
Lada, C. J., Lombardi, M. & Alves, J. F. 2009, ApJ, 703, 52CrossRefGoogle Scholar
Lada, C. J., Lombardi, M. & Alves, J. F. 2010, ArXiv e-printsGoogle Scholar
Lombardi, M. 2009, A&A, 493, 735Google Scholar
Lombardi, M. & Alves, J. 2001, A&A, 377, 1023Google Scholar
Lombardi, M., Alves, J. & Lada, C. J. 2010a, A&A, 519, L7Google Scholar
Lombardi, M., Lada, C. J. & Alves, J. 2008, A&A, 489, 143Google Scholar
Lombardi, M., Lada, C. J. & Alves, J. 2010b, A&A, 512, 67Google Scholar
Muench, A. A., Lada, E. A., Lada, C. J. & Alves, J. 2002, ApJ, 573, 366CrossRefGoogle Scholar
Myers, P. C. & Benson, P. J. 1983, ApJ, 266, 309CrossRefGoogle Scholar
Román-Zúñiga, C. G., Alves, J. F., Lada, C. J. & Lombardi, M. 2010, ArXiv e-printsGoogle Scholar
Tassis, K., Christie, D. A., Urban, A., Pineda, J. L., Mouschovias, T. C., Yorke, H. W. & Martel, H. 2010, MNRAS, 408, 1089CrossRefGoogle Scholar
Wu, J., Evans, N. J. II, Gao, Y., Solomon, P. M., Shirley, Y. L. & Vanden Bout, P. A. 2005, ApJL, 635, L173CrossRefGoogle Scholar