Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T22:23:48.976Z Has data issue: false hasContentIssue false

Insights into star cluster formation from λ ≳ 1μm

Published online by Cambridge University Press:  18 January 2010

Rémy Indebetouw
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904–4325, USA email: [email protected] National Radio Astronomy Observatory, Charlottesville, VA, USA
Rosie Chen
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904–4325, USA email: [email protected]
Crystal Brogan
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904–4325, USA email: [email protected]
Barbara Whitney
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904–4325, USA email: [email protected]
Thomas Robitaille
Affiliation:
Astronomy Department, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904–4325, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We would like to know how molecular clouds turn into stellar clusters, and with what efficiency massive stars form in those clusters, since massive stars are the main agents responsible for evolution of the interstellar medium of galaxies, and their subsequent star-formation history. The imprint of ‘precluster’ molecular cloud conditions can be observed, but only in the least evolved, most embedded clusters, necessarily at wavelengths that can penetrate more than 10 visual magnitudes of extinction. Mid-infrared photometric imaging, most recently and extensively from Spitzer, can be used to select young stellar objects in clustered star-formation environments in our Galaxy and nearby galaxies. Relatively sophisticated methods have been developed, but the fundamental principle remains the selection of sources that have excess infrared emission from circumstellar dust. By fitting radiative-transfer models to a source's spectral-energy distribution between ~1 and ~100μm, we constrain the circumstellar dust distribution and evolutionary state. We can explore many things with this protostellar distribution in mass/luminosity and time/evolutionary state. For example we do not see strong evidence for primordial mass segregation in initial studies. We find evidence of primordial hierarchical substructure, greater clustering at the youngest stages, and even imprints of the pre-stellar Jeans scale. We see correlation of the youngest sources with dense molecular clumps and constrain the timescales for chemical processing and dispersal of those clumps. We have only begun to mine the wealth of existing Spitzer, emerging Herschel and soon ALMA data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Allen, L. E., et al. 2004, ApJS, 154, 363CrossRefGoogle Scholar
Allison, R. J., Goodwin, S. P., Parker, R. J., de Grijs, R., Portegies Zwart, S. F., & Kouwenhoven, M. B. N. 2009, ApJ (Letters), 700, L99CrossRefGoogle Scholar
Blum, R. D., et al. 2006, AJ, 132, 2034CrossRefGoogle Scholar
Bigiel, F., Leroy, A., Walter, F., Brinks, E., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2846CrossRefGoogle Scholar
Bonnell, I. A. & Bate, M. R. 2006, MNRAS, 370, 488CrossRefGoogle Scholar
Brogan, C. L., Hunter, T. R., Cyganowski, C. J., Indebetouw, R., Beuther, H., Menten, K. M., & Thorwirth, S. 2009, ApJ, 707, 1CrossRefGoogle Scholar
Calzetti, D., et al. 2007, ApJ, 666, 870CrossRefGoogle Scholar
Chen, C.-H. R., Chu, Y.-H., Gruendl, R. A., Gordon, K. D., & Heitsch, F. 2009, ApJ, 695, 511CrossRefGoogle Scholar
Fellhauer, M., Wilkinson, M. I., & Kroupa, P. 2009, MNRAS, 397, 954CrossRefGoogle Scholar
Gruendl, R. A. & Chu, Y.-H. 2009, ApJS, 184, 172CrossRefGoogle Scholar
Gutermuth, R. A., Megeath, S. T., Myers, P. C., Allen, L. E., Pipher, J. L., & Fazio, G. G. 2009, ApJS, 184, 18CrossRefGoogle Scholar
Heitsch, F., Stone, J. M., & Hartmann, L. W. 2009, ApJ, 695, 248CrossRefGoogle Scholar
Hunter, T. R., Brogan, C. L., Megeath, S. T., Menten, K. M., Beuther, H., & Thorwirth, S. 2006, ApJ, 649, 888CrossRefGoogle Scholar
Indebetouw, R., Robitaille, T. P., Whitney, B. A., Churchwell, E., Babler, B., Meade, M., Watson, C., & Wolfire, M. 2007, ApJ, 666, 321CrossRefGoogle Scholar
Indebetouw, R., et al. 2008, AJ, 136, 1442CrossRefGoogle Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kennicutt, R. C., Hao, C.-N., Calzetti, D., Moustakas, J., Dale, D. A., Bendo, G., Engelbracht, C. W., Johnson, B. D., & Lee, J. C. 2009, ApJ, 703, 1672CrossRefGoogle Scholar
Krumholz, M. R., McKee, C. F., & Tumlinson, J. 2009, ApJ, 699, 850CrossRefGoogle Scholar
Leroy, A. K., Walter, F., Brinks, E., Bigiel, F., de Blok, W. J. G., Madore, B., & Thornley, M. D. 2008, AJ, 136, 2782CrossRefGoogle Scholar
Megeath, S. T., Hartmann, L., Luhman, K. L., & Fazio, G. G. 2005, ApJ (Letters), 634, L113CrossRefGoogle Scholar
Meixner, M., et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Mizuno, N., Rubio, M., Mizuno, A., Yamaguchi, R., Onishi, T., & Fukui, Y. 2001, PASJ (Letters), 53, L45CrossRefGoogle Scholar
Moeckel, N. & Bonnell, I. A. 2009, MNRAS, 1370Google Scholar
Tan, J. C., Krumholz, M. R., & McKee, C. F. 2006, ApJ (Letters), 641, L121CrossRefGoogle Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R., Wood, K., & Denzmore, P. 2006, ApJS, 167, 256CrossRefGoogle Scholar
Robitaille, T. P., Whitney, B. A., Indebetouw, R., & Wood, K. 2007, ApJS, 169, 328CrossRefGoogle Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451CrossRefGoogle Scholar
Walter, F., Brinks, E., de Blok, W. J. G., Bigiel, F., Kennicutt, R. C., Thornley, M. D., & Leroy, A. 2008, AJ, 136, 2563CrossRefGoogle Scholar
Whitney, B. A., et al. 2008, AJ, 136, 18CrossRefGoogle Scholar
de Wit, W. J., Testi, L., Palla, F., & Zinnecker, H. 2005, A&A, 437, 247Google Scholar
Wong, T. & Melatos, A. 2002, PASA, 19, 475CrossRefGoogle Scholar
Yang, C.-C., Gruendl, R. A., Chu, Y.-H., Mac Low, M.-M., & Fukui, Y. 2007, ApJ, 671, 374CrossRefGoogle Scholar