Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T13:05:16.783Z Has data issue: false hasContentIssue false

Infrared space astrometry project JASMINE

Published online by Cambridge University Press:  01 October 2007

N. Gouda
Affiliation:
National Astronomical Observatory of JAPAN, Mitaka, Tokyo, 181-8588, JAPAN email: [email protected], [email protected], [email protected]
Y. Kobayashi
Affiliation:
National Astronomical Observatory of JAPAN, Mitaka, Tokyo, 181-8588, JAPAN email: [email protected], [email protected], [email protected]
Y. Yamada
Affiliation:
Department of Physics, Kyoto University, Kyoto, 606-8502, JAPAN email: [email protected]
T. Yano
Affiliation:
National Astronomical Observatory of JAPAN, Mitaka, Tokyo, 181-8588, JAPAN email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A Japanese plan of an infrared (z-band:0.9 μas or k-band:2.2 μas) space astrometry (JASMINE-project) is introduced. JASMINE (Japan Astrometry Satellite Mission for INfrared Exploration) will measure distances and tangential motions of stars in the bulge of the Milky Way. It will measure parallaxes, positions with an accuracy of 10 μas and proper motions with an accuracy of 10 μas/year for stars brighter than z=14 mag or k=11 mag. JASMINE will observe about ten million stars belonging to the bulge component of our Galaxy. With a completely new “map” of the Galactic bulge, it is expected that many new exciting scientific results will be obtained in various fields of astronomy. Presently, JASMINE is in a development phase, with a targeted launch date around 2016. Science targets, preliminary design of instruments, observing strategy, critical technical issues in JASMINE and also Nano-JASMINE project are described in this paper.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Eckart, A. & Genzel, R. 1996, Nature 383, 415.CrossRefGoogle Scholar
Gebhardt, K., Karl, B., Ralf, B., Gary, D., Alan, F., Faber, S. M., Filippenko, A. V., Green, R., Grillmair, C., Carl, H., Luis, C., Kormendy, J., Lauer, T. R., Magorrian, J., Pinkney, J., Richstone, D., & Tremaine, S. 2000, ApJ, 539, L13, 2000.CrossRefGoogle Scholar
Gouda, N., Yano, T., Kobayashi, Y., Yamada, Y., Tsujimoto, T., Nakajima, T., Suganuma, M., Matsuhara, H., Ueda, S. & JASMINE Working Group. 2004, in: Kurtz, D.W. (eds.), Transits of Venus: New Views of the Solar System and Galaxy, Proc. IAU Symposium No.196 (Cambridge University Press), p. 455.Google Scholar
Kobayashi, Y., Gouda, N., Tsujimoto, T., Yano, T., Suganuma, M., Yamauchi, M., Takato, N., Miyazaki, S., Yamada, Y., Sako, N., & Nakasuka, S. 2006, in Proceedings of the SPIE, 6265Mather, J. etc., ed., 626544-1–626544-10.Google Scholar
Suganuma, M., Kobayashi, Y., Gouda, N., Yano, T., Yamada, Y., Takato, N., & Yamauchi, M. 2006, in Proceedings of the SPIE, 6265Mather, J. etc., ed., 626545-1–626545-12.Google Scholar
Wainscoat, R. J., Cohen, M., Volk, K., Walker, H. J. & Schwartz, D. E. 1992, ApJS, 83, 111146.CrossRefGoogle Scholar