Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T14:52:23.406Z Has data issue: false hasContentIssue false

Infrared Observational Studies of Gas Molecules in Disks

Published online by Cambridge University Press:  21 December 2011

C. Salyk*
Affiliation:
The University of Texas, Department of Astronomy, 1 University Station, C1400, Austin, TX 78712, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There remain many fundamental unanswered questions about protoplanetary disks, including how (and if?) they form planets, how mass is transferred through the disk and onto the star, and how they ultimately disperse. Also, a major goal of protoplanetary disk studies is to understand the relationship between disk properties and the physical and chemical properties of planetary systems. IR molecular spectroscopy is a particularly powerful tool for probing the conditions and physical process in protoplanetary disks, which are too small and close to their parent stars to be imaged with ease. I will discuss the suite of infrared molecular transitions observed to date, which highlight the following three techniques of IR spectroscopy. Firstly, line shapes and strengths can be used as tracers of disk physics, including volatile condensation/evaporation, photo-processes, grain growth and turbulence. Secondly, observations of multiple molecular abundances provide constraints for disk chemical models, which may ultimately help explain the great diversity of planetary bodies. Finally, resolved line shapes and spectro-astrometry provide a means to study disk structure on extremely small size scales. Because IR observations are typically sensitive to radii of a few AU or smaller, the processes and structures being probed are relevant to the birth and growth of terrestrial and giant planets. Recent results that I will highlight include the discovery of a multitude of molecules in disks around sun-like stars (including H2O, OH, HCN, C2H2 and CO2), with detection rates that depend on stellar mass, constraints on gas mass and location in transitional disks, detection and characterization of ‘snow lines’, measurements of inner disk rims, and detections of inner disk asymmetries. I will also discuss how IR spectroscopy will remain relevant even with the emergence of facilities such as ALMA, as it allows us to connect the conditions in terrestrial-planet-forming regions with those in the cold outer reaches of disks, and to better construct a comprehensive understanding of the nature of protoplanetary disks.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Agúndez, M., Cernicharo, J., & Goicoechea, J. R. 2008, A&A, 483, 831Google Scholar
Akeson, R. L., et al. 2011, ApJ, 728, 96CrossRefGoogle Scholar
Alexander, R. D. & Armitage, P. J. 2007, MNRAS, 375, 500CrossRefGoogle Scholar
Andrews, S. M., Wilner, D. J., Espaillat, C., Hughes, A. M., Dullemond, C. P., McClure, M. K., Qi, C., & Brown, J. M. 2011, ApJ, 732, 42CrossRefGoogle Scholar
Bast, J. E., Brown, J. M., Herczeg, G. J., van Dishoeck, E. F., & Pontoppidan, K. M. 2011, A&A, 571, 119Google Scholar
Bethell, T. & Bergin, E. 2009, Science, 326, 1675CrossRefGoogle Scholar
Bitner, M. A., et al. 2008, ApJ, 688, 1326CrossRefGoogle Scholar
Blake, G. A. & Boogert, A. C. A. 2004, ApJ (Letters), 606, L73CrossRefGoogle Scholar
Brittain, S. D., Rettig, T. W., Simon, T., Kulesa, C., DiSanti, M. A. & Dello Russo, N. 2003, ApJ, 588, 535CrossRefGoogle Scholar
Brittain, S. D., Najita, J. R., & Carr, J. S. 2009, ApJ, 702, 85CrossRefGoogle Scholar
Brown, J. M., Blake, G. A., Qi, C., Dullemond, C. P., Wilner, D. J., & Williams, J. P. 2009, ApJ, 704, 496CrossRefGoogle Scholar
Calvet, N., Patino, A., Magris, G. C., & D'Alessio, P. 1991, ApJ, 380, 617CrossRefGoogle Scholar
Carmona, A., et al. 2008, A&A, 477, 839Google Scholar
Carr, J. S. 1989, ApJ, 345, 522CrossRefGoogle Scholar
Carr, J. S., Tokunaga, A. T., & Najita, J. 2004, ApJ, 603, 213CrossRefGoogle Scholar
Carr, J. S. & Najita, J. R. 2008, Science, 319, 1504CrossRefGoogle Scholar
Carr, J. S. & Najita, J. R. 2011, ApJ, 733, 102CrossRefGoogle Scholar
Dullemond, C. P. & Monnier, J. D. 2010, ARAA, 48, 205CrossRefGoogle Scholar
Ercolano, B., Drake, J. J., Raymond, J. C., & Clarke, C. C. 2008, ApJ, 688, 398CrossRefGoogle Scholar
Fedele, D., Pascucci, I., Brittain, S., Kamp, I., Woitke, P., Williams, J. P., Dent, W. R. F., & Thi, W.-F. 2011, ApJ, 732, 106CrossRefGoogle Scholar
Hollenbach, D., Johnstone, D., Lizano, S., & Shu, F. 1994, ApJ, 428, 654CrossRefGoogle Scholar
Ireland, M. J. & Kraus, A. L. 2008, ApJ (Letters), 678, L59CrossRefGoogle Scholar
Lahuis, F., et al. 2006, ApJ (Letters), 636, L145CrossRefGoogle Scholar
Mandell, A. M., Mumma, M. J., Blake, G. A., Bonev, B. P., Villanueva, G. L., & Salyk, C. 2008, ApJ (Letters), 681, L25CrossRefGoogle Scholar
Markwick, A. J., Ilgner, M., Millar, T. J., & Henning, T. 2002, A&A, 385, 632Google Scholar
Marsh, K. A., Silverstone, M. D., Becklin, E. E., Koerner, D. W., Werner, M. W., Weinberger, A. J., & Ressler, M. E. 2002, ApJ, 573, 425CrossRefGoogle Scholar
Meijerink, R., Pontoppidan, K. M., Blake, G. A., Poelman, D. R., & Dullemond, C. P. 2009, ApJ, 704, 1471CrossRefGoogle Scholar
Najita, J. R., Edwards, S., Basri, G., & Carr, J. 2000, Protostars and Planets IV, 457Google Scholar
Najita, J., Carr, J. S., & Mathieu, R. D. 2003, ApJ, 589, 931CrossRefGoogle Scholar
Najita, J. R., Carr, J. S., Strom, S. E., Watson, D. M., Pascucci, I., Hollenbach, D., Gorti, U., & Keller, L. 2010, ApJ, 712, 274CrossRefGoogle Scholar
Pascucci, I., Apai, D., Luhman, K., Henning, T., Bouwman, J., Meyer, M. R., Lahuis, F., & Natta, A. 2009, ApJ, 696, 143CrossRefGoogle Scholar
Pontoppidan, K. M., Blake, G. A., van Dishoeck, E. F., Smette, A., Ireland, M. J., & Brown, J. 2008, ApJ, 684, 1323CrossRefGoogle Scholar
Pontoppidan, K. M., Salyk, C., Blake, G. A., Meijerink, R., Carr, J. S., & Najita, J. 2010, ApJ, 720, 887CrossRefGoogle Scholar
Pontoppidan, K. M., Salyk, C., Blake, G. A., & Käufl, H. U. 2010, ApJ (Letters), 722, L173CrossRefGoogle Scholar
Pontoppidan, K. M., Blake, G. A., & Smette, A. 2011, ApJ, 733, 84CrossRefGoogle Scholar
Ramsay Howat, S. K. & Greaves, J. S. 2007, MNRAS, 379, 1658CrossRefGoogle Scholar
Rettig, T. W., Haywood, J., Simon, T., Brittain, S. D., & Gibb, E. 2004, ApJ, 616, L163CrossRefGoogle Scholar
Rice, W. K. M., Wood, K., Armitage, P. J., Whitney, B. A., & Bjorkman, J. E. 2003, MNRAS, 342, 79CrossRefGoogle Scholar
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M. 2007, ApJ (Letters), 655, L105CrossRefGoogle Scholar
Salyk, C., Pontoppidan, K. M., Blake, G. A., Lahuis, F., van Dishoeck, E. F., & Evans, N. J. II 2008, ApJ (Letters), 676, L49CrossRefGoogle Scholar
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M. 2009, ApJ, 699, 330CrossRefGoogle Scholar
Salyk, C., Pontoppidan, K. M., Blake, G. A., Najita, J. R., & Carr, J. S. 2011, ApJ, 731, 130CrossRefGoogle Scholar
Salyk, C., Blake, G. A., Boogert, A. C. A., & Brown, J. M., 2011, submittedGoogle Scholar
Scoville, N., Kleinmann, S. G., Hall, D. N. B., & Ridgway, S. T. 1983, ApJ, 275, 201CrossRefGoogle Scholar
Smith, R. L., Pontoppidan, K. M., Young, E. D., Morris, M. R., & van Dishoeck, E. F. 2009, ApJ, 701, 163CrossRefGoogle Scholar
Smith, R. L., Pontoppidan, K. M., Young, E. D., & Morris, M. R. 2010, Disks, Meteorites, Planetesimals, 6012Google Scholar
Teske, J. K., Najita, J. R., Carr, J. S., Pascucci, I., Apai, D., & Henning, T. 2011, arXiv:1104.0249Google Scholar
van Dishoeck, E. F. & Black, J. H. 1988, ApJ, 334, 771CrossRefGoogle Scholar
Willacy, K. & Woods, P. M. 2009, ApJ, 703, 479CrossRefGoogle Scholar
Woitke, P., Kamp, I., & Thi, W.-F. 2009, A&A, 501, 383Google Scholar