Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:05:50.975Z Has data issue: false hasContentIssue false

Influence of the astrometric accuracy of observation on the extrapolated ephemerides of natural satellites

Published online by Cambridge University Press:  01 October 2007

J. Desmars
Affiliation:
Institut de Mécanique Céleste et de Calcul des Éphémérides - Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France email: [email protected]
J.-E. Arlot
Affiliation:
Institut de Mécanique Céleste et de Calcul des Éphémérides - Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France email: [email protected]
A. Vienne
Affiliation:
Institut de Mécanique Céleste et de Calcul des Éphémérides - Observatoire de Paris, UMR 8028 CNRS, 77 avenue Denfert-Rochereau, 75014 Paris, France email: [email protected] Université de Lille, 59000 Lille, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The accuracy of planetary satellites ephemerides is determined not only by the accuracy of dynamical model (internal accuracy) but also by the accuracy of the observations (external accuracy) used to fit the initial parameters of a model. This external accuracy extrapolated in the future is unknown most of the time and tends to degrade the global accuracy of ephemerides. Even if we can estimate the quality of the ephemerides by comparison with observations, we do not know how to determinate the evolution of the accuracy outside the period of observations. We will present a statistical method, resampling of observations, which allows a better estimation of the extrapolated accuracy in the future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Efron, B. & Tibshirani, R. J. 1993, in: Monographs on Statistics and Applied Probability An Introduction to the BootstrapCrossRefGoogle Scholar
Muinonen, K. & Bowell, E., 1993, Icarus 104, 255CrossRefGoogle Scholar
Vienne, A. & Duriez, L., 1995, A&A 297, 588Google Scholar
Virtanen, J., Muinonen, K & Bowell, E., 2001, Icarus 154, 412CrossRefGoogle Scholar