Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T15:05:16.013Z Has data issue: false hasContentIssue false

The influence of chemical environment on the infrared spectra of embedded molecules in astrophysical ices

Published online by Cambridge University Press:  04 September 2018

Victor S. Bonfim
Affiliation:
Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP - Brazil email: [email protected]
Sergio Pilling
Affiliation:
Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba - UNIVAP, Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, SP - Brazil email: [email protected] Instituto Tecnológico de Aeronáutica, ITA - DCTA Praça Marechal Eduardo Gomes, 50 - Vila das Acacias, São José dos Campos, SP - Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work, one intends to computationally simulate and investigate, via thermochemical calculations, how the chemical environment influences some molecular properties, such as IR spectra and absorption cross section, of individual species embedded in the solid phase employing the Polarized Continuum Model (PCM) approach. The trial molecules used here to check these effects are CO, CO2 and H2O. The solid phase (bulk ice) is simulated using different dielectric constant values representing different types of astrophysical ice at PCM approach. The effect of temperature is also investigated since it is known it affects the dielectric constant of the solvent medium.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Aragones, J. L., MacDowell, L. G., & Vega, C. 2011, J. Phys. Chem. A 115, 5745-5758Google Scholar
Bonfim, V. S., Castilho, R. B., Baptista, L., & Pilling, S. 2017, Phys. Chem. Chem. Phys. submittedGoogle Scholar
Bonfim, V. S., Castilho, R. B., Baptista, L., & Pilling, S. 2015 J. Phys. Conf. Ser. 635, 102012. doi:10.1088/1742-6596/635/10/102012Google Scholar
Collings, M. P., Anderson, M. A., Chen, R., Dever, J. W., Viti, S., Williams, D. A., & McCoustra, M. R. S. 2004 Mon. Not. R. Astron. Soc. 354, 1133-1140Google Scholar
Dunning, T. H. Jr 1989, J. Chem. Phys., 90, 1007Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V, Cioslowski, J., & Fox, D. J. 2010, Gaussian 09, Revision B.01Google Scholar
Constellation Guide 2013, Eagle Nebula - Messier 16 URL: http://www.constellation-guide.com/eagle-nebula-messier-16/ (accessed 4.2.17)Google Scholar
Johari, G. P., & Whalley, E. 1981, K. J. Chem. Phys. 75, 1333-1340Google Scholar
Miertuš, S., Scrocco, E., & Tomasi, J. 1981, Chem. Phys. 55, 117-129Google Scholar
Öberg, K. I., Linnartz, H., Visser, R., & van Dishoeck, E. F. 2009, ApJ 693, 1209-1218Google Scholar
Park, J. Y., & Woon, D. E. 2004, J. Phys. Chem. A. 108, 6589-6598Google Scholar
Pilling, S., Baptista, L., Boechat-Roberty, H. M., & Andrade, D. P. P. 2011a, Astrobiology 11, 883-893Google Scholar
Pilling, S. & Bergantini, A. 2015, ApJ, 811, 151Google Scholar
Pilling, S., Duarte, E. S., Domaracka, A., Rothard, H., Boduch, P., & Silveira, E. F. Da 2011b Phys. Chem. Chem. Phys. 13, 15755-15765Google Scholar
Sun, Y. F., & Goldberg, D. 2005, Geophys. Res. Lett., 32, L04313Google Scholar
Tsekouras, A. A., Iedema, M. J., & Cowin, J. P. 1998, Phys. Rev. Lett. 80, 5798-5801Google Scholar
Van Dishoeck, E. F., Herbst, E., & Neufeld, D. A. 2013, Chem. Rev. 113, 9043-9085Google Scholar
Woon, D. E., & Park, J. 2004, ApJ. J. 607, 342-345Google Scholar