Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T15:08:18.538Z Has data issue: false hasContentIssue false

The infancy of supernova remnants: evolving a supernova into its remnant in 3D

Published online by Cambridge University Press:  17 October 2017

Michael Gabler
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
Hans-Thomas Janka
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany
Annop Wongwathanarat
Affiliation:
RIKEN, Astrophysical Big Bang Laboratory, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recently, first neutrino-driven supernova explosions have been obtained in 3D, self-consistent, first-principle simulations, these models are still not always exploding robustly and, in general, the explosions are not sufficiently energetic. To constrain the explosion mechanism, and the related uncertainties, it is thus very helpful to consider observational constraints: pulsar kicks, progenitor association and supernova remnants (SNR). Recent observations of asymmetries in the supernova ejecta of Cas A are very promising, to compare to long-term simulations of the explosion. In addition 3D observations of SN87A are becoming more constraining on the geometry of the ejected material during the explosion. In this talk I will discuss our efforts to model the late time evolution of a 3D supernova explosion, where we include the effects of beta decay, which inflates the structures rich in 56Ni. The structures we find in the simulations depend on the quantities plotted.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Arnett, D., Fryxell, B., & Mueller, E. 1989, ApJ, 341, L63 Google Scholar
Blondin, J. M. & Lundqvist, P. 1993, ApJ, 405, 337 CrossRefGoogle Scholar
Blondin, J. M., Borkowski, K. J., & Reynolds, S. P. 2001, ApJ, 557, 782 Google Scholar
Boggs, S. E., Harrison, F. A., Miyasaka, H., et al. 2015, Science, 348, 670 CrossRefGoogle Scholar
Colella, P. & Glaz, H. M. 1985, Journal of Computational Physics, 59, 264 Google Scholar
Colella, P. & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174 Google Scholar
Couch, S. M., Wheeler, J. C., & Milosavljević, M. 2009, ApJ, 696, 953 CrossRefGoogle Scholar
Couch, S. M., Pooley, D., Wheeler, J. C., & Milosavljević, M. 2011, ApJ, 727, 104 Google Scholar
DeLaney, T., Rudnick, L., Stage, M. D., et al. 2010, ApJ, 725, 2038 Google Scholar
Dewey, D., Dwarkadas, V. V., Haberl, F., Sturm, R., & Canizares, C. R. 2012, ApJ, 752, 103 Google Scholar
Ellinger, C. I., Young, P. A., Fryer, C. L., & Rockefeller, G. 2012, ApJ, 755, 160 CrossRefGoogle Scholar
Ellinger, C. I., Rockefeller, G., Fryer, C. L., Young, P. A., & Park, S. 2013, arXiv:1305.4137Google Scholar
Fesen, R. A. 2001, ApJS, 133, 161 Google Scholar
Fesen, R. A., Hammell, M. C., Morse, J., et al. 2006, ApJ, 645, 283 Google Scholar
Fryxell, B., Arnett, D., & Mueller, E. 1991, ApJ, 367, 619 CrossRefGoogle Scholar
Gawryszczak, A., Guzman, J., Plewa, T., & Kifonidis, K. 2010, A&A, 521, A38 Google Scholar
Grefenstette, B. W., Harrison, F. A., Boggs, S. E., et al. 2014, Nature, 506, 339 Google Scholar
Grefenstette, B. W., Fryer, C. L., Harrison, F. A., et al. 2017, ApJ, 834, 19 Google Scholar
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1990, ApJ, 358, L57 Google Scholar
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1992, ApJ, 390, 230 CrossRefGoogle Scholar
Hachisu, I., Matsuda, T., Nomoto, K., & Shigeyama, T. 1994, A&AS, 104Google Scholar
Hammer, N. J., Janka, H.-T., & Müller, E. 2010, ApJ, 714, 1371 Google Scholar
Herant, M. & Benz, W. 1991, ApJ, 370, L81 Google Scholar
Herant, M. & Woosley, S. E. 1994, ApJ, 425, 814 Google Scholar
Herant, M. & Benz, W. 1992, ApJ, 387, 294 Google Scholar
Hungerford, A. L., Fryer, C. L., & Warren, M. S. 2003, ApJ, 594, 390 Google Scholar
Hwang, U., Laming, J. M., Badenes, C., et al. 2004, ApJ, 615, L117 Google Scholar
Hungerford, A. L., Fryer, C. L., & Rockefeller, G. 2005, ApJ, 635, 487 CrossRefGoogle Scholar
Iwamoto, K., Young, T. R., Nakasato, N., et al. 1997, ApJ, 477, 865 Google Scholar
Joggerst, C. C., Woosley, S. E., & Heger, A. 2009, ApJ, 693, 1780 Google Scholar
Joggerst, C. C., Almgren, A., Bell, J., et al. 2010, ApJ, 709, 11 Google Scholar
Joggerst, C. C., Almgren, A., & Woosley, S. E. 2010, ApJ, 723, 353 CrossRefGoogle Scholar
Junde, H., Su, H., & Dong, Y. 2011, Nuclear Data Sheets, 112, 1513 Google Scholar
Kageyama, A. & Sato, T. 2004, Geochemistry, Geophysics, Geosystems, 5, Q09005 Google Scholar
Kifonidis, K., Plewa, T., Janka, H.-T., & Müller, E. 2000, ApJ, 531, L123 CrossRefGoogle Scholar
Kifonidis, K., Plewa, T., Janka, H.-T., & Müller, E. 2003, A&A, 408, 621 Google Scholar
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T., & Müller, E. 2006, A&A, 453, 661 Google Scholar
Li, H., McCray, R., & Sunyaev, R. A. 1993, ApJ, 419, 824 Google Scholar
Milisavljevic, D., & Fesen, R. A. 2013, ApJ, 772, 134 Google Scholar
Milisavljevic, D., & Fesen, R. A. 2015, Science, 347, 526 Google Scholar
Mueller, E., Fryxell, B., & Arnett, D. 1991, A&A, 251, 505 Google Scholar
Nagataki, S., Hashimoto, M.-a., Sato, K., Yamada, S., & Mochizuki, Y. S. 1998, ApJ, 492, L45 Google Scholar
Ono, M., Nagataki, S., Ito, H., et al. 2013, ApJ, 773, 161 CrossRefGoogle Scholar
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2015, ApJ, 810, 168 Google Scholar
Orlando, S., Miceli, M., Pumo, M. L., & Bocchino, F. 2016, ApJ, 822, 22 Google Scholar
Plewa, T. & Müller, E. 1999, A&A, 342, 179 Google Scholar
Podsiadlowski, P., Morris, T. S., & Ivanova, N. 2007, Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters, 937, 125 CrossRefGoogle Scholar
Potter, T. M., Staveley-Smith, L., Reville, B., et al. 2014, ApJ, 794, 174 Google Scholar
Tanaka, T. & Washimi, H. 2002, Science, 296, 321 CrossRefGoogle Scholar
Utrobin, V. P., Wongwathanarat, A., Janka, H.-T., & Müller, E. 2015, A&A, 581, A40 Google Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2010, ApJ, 725, L106 CrossRefGoogle Scholar
Wongwathanarat, A., Hammer, N. J., & Müller, E. 2010, A&A, 514, A48 Google Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2013, A&A, 552, A126 Google Scholar
Wongwathanarat, A., Müller, E., & Janka, H.-T. 2015, A&A, 577, A48 Google Scholar
Wongwathanarat, A., Janka, H.-T., Mueller, E., Pllumbi, E., & Wanajo, S. 2016, arXiv:1610.05643Google Scholar
Woosley, S. E. 1988, ApJ, 330, 218 Google Scholar
Yamada, S. & Sato, K. 1990, ApJ, 358, L9 Google Scholar