Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:01:14.148Z Has data issue: false hasContentIssue false

Inclusion of velocity gradients in the Unno solution for magnetic field diagnostic from spectropolarimetric data

Published online by Cambridge University Press:  08 June 2011

Guillaume Molodij
Affiliation:
LESIA, UMR 8109 CNRS, Observatoire de Paris-Meudon, 5 place J. Janssen, 92195 Meudon principal email: [email protected]
Véronique Bommier
Affiliation:
LERMAUMR 8112 CNRS, Observatoire de Paris-Meudon, 5 place J. Janssen, 92195 Meudon principal email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an extension of the Unno-Rachkovsky solution that provides the theoretical profiles coming out of a Milne-Eddington atmosphere imbedded in a magnetic field, to the additional taking into account of a vertical velocity gradient. Thus, the theoretical profiles may display asymmetries as do the observed profiles, which facilitates the inversion based on the Unno-Rachkovsky theory, and leads to the additional determination of the vertical velocity gradient. We present UNNOFIT inversion on spectropolarimetric data performed on an active region of the Sun with the french-italian telescope THEMIS operated by CNRS and CNR on the island of Tenerife.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Auer, L. & Heasley, J., 1978, A & A, 64, 67Google Scholar
Bommier, V., Landi Degl'Innocenti, E., Landolfi, M., & Molodij, G., 2007, A & A, 464, 323CrossRefGoogle Scholar
Landi Degl'Innocenti, E., & Landolfi, M. 2004, Polarization in Spectral Lines (Kluwer Academ. Publ., Dordrecht)CrossRefGoogle Scholar
Landolfi, M. & Landi Degl'Innocenti, E., 1982, Sol.Phys., 78, 355CrossRefGoogle Scholar
Landolfi, M., Landi Degl'Innocenti, E., & Arena, P. 1984, Sol.Phys., 93, 269CrossRefGoogle Scholar
Landolfi, M. & Landi Degl'Innocenti, E., 1996, Sol.Phys., 164, 191CrossRefGoogle Scholar
Molodij, G. & Rayrole, J., 2006, (in Casini, R. and Lites, B.W. eds.), ASPW4, 358, 132Google Scholar
Rachkovsky, D. N., 1961, Izv. Crim. Astrphys. Obs., 25, 277.Google Scholar
Ribes, E., Rees, D. E. & Fang, Ch; 1985, Astrophy. J., 296, 268.CrossRefGoogle Scholar
SánchezAlmeida, J. Almeida, J. & Lites, B. W., 1992, ApJ, 398, 359CrossRefGoogle Scholar
Solanki, S. K., 1986, A & A, 168, 311Google Scholar
Solanki, S. W. & Pahkle, K. D., 1988, A & A, 201, 143Google Scholar
Stenflo, J.O., Harvey, J. W., Brault, J. W., Solanki, S. K., 1984, A & A, 131, 333Google Scholar
Pantellini, F. G. E., Solanki, S. K., & Stenflo, J. O., 1988, A & A, 189, 263Google Scholar
Unno, W., 1956, Publ. Astr. Soc. Japan, 8, 108.Google Scholar