Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T21:50:17.715Z Has data issue: false hasContentIssue false

Impactor Flux on the Pluto-Charon System

Published online by Cambridge University Press:  06 April 2010

Gonzalo C. de Elía
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CCT La Plata - CONICET, Paseo del Bosque S/N (1900), La Plata, Buenos Aires, Argentina email: [email protected], [email protected], [email protected]
Romina P. Di Sisto
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CCT La Plata - CONICET, Paseo del Bosque S/N (1900), La Plata, Buenos Aires, Argentina email: [email protected], [email protected], [email protected]
Adrián Brunini
Affiliation:
Facultad de Ciencias Astronómicas y Geofísicas - UNLP, IALP - CCT La Plata - CONICET, Paseo del Bosque S/N (1900), La Plata, Buenos Aires, Argentina email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work, we study the impactor flux on Pluto and Charon due to the collisional evolution of Plutinos.To do this, we develop a statistical code that includes catastrophic collisions and cratering events, and takes into account the stability and instability zones of the 3:2 mean motion resonance with Neptune. Our results suggest that if 1 Pluto-sized object is in this resonance, the flux of D = 2 km Plutinos on Pluto is ~4–24 percent of the flux of D = 2 km Kuiper Belt projectiles on Pluto. However, with 5 Pluto-sized objects in the resonance, the contribution of the Plutino population to the impactor flux on Pluto may be comparable to that of the Kuiper Belt. As for Charon, if 1 Pluto-sized object is in the 3:2 resonance, the flux of D = 2 km Plutinos is ~10–63 percent of the flux of D = 2 km impactors coming from the Kuiper Belt. However, with 5 Pluto-sized objects, the Plutino population may be a primary source of the impactor flux on Charon. We conclude that it is necessary to specify the Plutino size distribution and the number of Pluto-sized objects in the 3:2 Neptune resonance in order to determine if the Plutino population is a primary source of impactors on the Pluto-Charon system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Benz, W. & Asphaug, E. 1999, Icarus, 142, 5CrossRefGoogle Scholar
Davis, D. R., Weidenschilling, S. J., Farinella, P., Paolicchi, P., & Binzel, R. P. 1989, in: Binzel, R. P., Gehrels, T. & Matthews, M. S. (eds.), Asteroids II, (Tucson: University of Arizona Press), p. 805Google Scholar
de Elía, G. C., Brunini, A., & Di Sisto, R. P. 2008, A&A, 490, 835Google Scholar
Dell'Oro, A., Marzari, F., Paolicchi, P., & Vanzani, V. 2001, A&A, 366, 1053Google Scholar
Durda, D. D. & Stern, S. A. 2000, Icarus, 145, 220CrossRefGoogle Scholar
Fernández, J. A., Gallardo, T., & Brunini, A. 2002, Icarus, 159, 358CrossRefGoogle Scholar
Kenyon, S. J., Bromley, B. C., O'Brien, D. P., & Davis, D. R. 2008, in: Barucci, M. A., Boehnhardt, H., Cruikshank, D. P., & Morbidelli, A. (eds.), The Solar System Beyond Neptune, (Tucson: University of Arizona Press), p. 293Google Scholar
Morbidelli, A. 1997, Icarus, 127, 1CrossRefGoogle Scholar
O'Brien, D. P. & Greenberg, R. 2005, Icarus, 178, 179CrossRefGoogle Scholar
Zahnle, K., Schenk, P., Levison, H., & Dones, L. 2003, Icarus, 163, 263CrossRefGoogle Scholar