Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T01:23:27.519Z Has data issue: false hasContentIssue false

Impact of the Gaia ESA mission on the primary Period–Luminosity Calibrators in the Milky Way: Cepheids and RR Lyrae

Published online by Cambridge University Press:  06 February 2024

Gisella Clementini*
Affiliation:
Istituto Nazionale di Astrofisica-Osservatorio di Astrofisica e Scienza dello Spazio, Via Piero Gobetti 93/3, Bologna, 40129, Italy Gaia Data Processing and Analysis Consortium (DPAC), Coordination Unit 7 (CU7; Variability Processing)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the impact of Gaia, the cornerstone mission of the European Space Agency (ESA), on the calibration of the period–luminosity and luminosity–metallicity relations of Cepheids and RR Lyrae stars, with specific reference to data published as part of the most recent Gaia releases: Early Data Release 3 (EDR3), on 19 December 2020, and Data Release 3 (DR3) on 13 June 2022. We provide future perspectives for the Gaia mission, including extensions approved by ESA and a tentative schedule of the data releases that will take place in the next few years. We briefly present plans for cross-Coordination Unit processing of Gaia data of Cepheids and RR Lyrae stars for DR4 and conclude by outlining the expected improvement in astrometry at the end of the extended Gaia mission, which will help to further strengthen the calibration of the first rung of the cosmic distance ladder.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Andrae, R., Fouesneau, M., Sordo, R., et al. 2023, A&A, 674, A27 Google Scholar
Arenou, F., Luri, X., Babusiaux, C., et al. 2018, A&A, 616, A17 Google Scholar
Bhardwaj, A., Rejkuba, M., de Grijs, R., et al. 2021, ApJ, 909, 200 Google Scholar
Breuval, L., Kervella, P., Wielgórski, P., et al. 2021, ApJ, 913, 38 Google Scholar
Breuval, L., Riess, A. G., Kervella, P., et al. 2022, ApJ, 939, 89 Google Scholar
Clementini, G., Carretta, E., Gratton, R., et al. 1995, AJ, 110, 2319 Google Scholar
Clementini, G., Ripepi, V., Garofalo, A., et al. 2023, A&A, 674, A18 Google Scholar
Clementini, G., Ripepi, V., Leccia, S., et al. 2016, A&A, 595, A133 Google Scholar
Clementini, G., Ripepi, V., Molinaro, R., et al. 2019, A&A, 622, A60 Google Scholar
Creevey, O. L., Sordo, R., Pailler, F., et al. 2023, A&A, 674, A26 Google Scholar
Crestani, J., Braga, V. F., Fabrizio, M. et al., 2021, ApJ, 914, 10 Google Scholar
Cropper, M., Katz, D., Sartoretti, P., et al. 2018, A&A, 616, A5 Google Scholar
Eyer, L., Mowlavi, N., Evans, D. W., et al. 2017, arXiv:1702.03295Google Scholar
Eyer, L., Audard, M., Holl, B., et al. 2023, A&A, 674, A13 Google Scholar
Collaboration, Gaia, Brown, A. G. A., Vallenari, A., et al. 2021, A&A, 649, A1 Google Scholar
Collaboration, Gaia, Clementini, G., Eyer, L., et al. 2017, A&A, 605, A79 Google Scholar
Collaboration, Gaia, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1 Google Scholar
Collaboration, Gaia, Vallenari, A., Brown, A. G. A., et al. 2023, A&A, 674, A1 Google Scholar
Garofalo, A., Delgado, H. E., Sarro, L. M., et al. 2022, MNRAS, 513, 788 CrossRefGoogle Scholar
Gilligan, C. K., Chaboyer, B., Marengo, M., et al. 2021, MNRAS, 503, 4719 Google Scholar
Ivezić, Ž., Kahn, S. M., & Eliason, P. 2014, EAS Publ. Ser., 67–68, 211 Google Scholar
Klagyivik, P., Szabados, L., Szing, A., et al. 2013, MNRAS, 434, 2418 Google Scholar
Lambert, D. L., Heath, J. E., Lemke, M., et al. 1996, ApJS, 103, 183 Google Scholar
Layden, A. C., Tiede, G. P., Chaboyer, B., et al. 2019, AJ, 158, 105 Google Scholar
Groenewegen, M. A. T. 2021, A&A, 654, A2 Google Scholar
Li, X.-Y., Huang, Y., Liu, G.-C., et al. 2023, ApJ, 944, 88 Google Scholar
Lindegren, L., Bastian, U., Biermann, M., et al. 2021, A&A, 649, A4 Google Scholar
Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, A&A, 616, A2 Google Scholar
Lindegren, L., Lammers, U., Bastian, U., et al. 2016, A&A, 595, A4 Google Scholar
Molinaro, R., Ripepi, V., Marconi, M., et al. 2023, MNRAS, 520, 4154 Google Scholar
Muraveva, T., Delgado, H. E., Clementini, G., et al. 2018, MNRAS, 481, 1195 Google Scholar
Nemec, J. M., Cohen, J. G., Ripepi, V., et al. 2013, ApJ, 773, 181 Google Scholar
Pancino, E., Britavskiy, N., Romano, D., et al. 2015, MNRAS, 447, 2404 Google Scholar
Piersimoni, A. M., Bono, G., & Ripepi, V. 2002, AJ, 124, 1528 Google Scholar
Recio-Blanco, A., de Laverny, P., Palicio, P. A., et al. 2023, A&A, 674, A29 Google Scholar
Riello, M., De Angeli, F., Evans, D. W., et al. 2021, A&A, 649, A3 Google Scholar
Riess, A. G., Breuval, L., Yuan, W., et al. 2022a, ApJ, 938, 36 CrossRefGoogle Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2018, ApJ, 861, 126 Google Scholar
Riess, A. G., Casertano, S., Yuan, W., et al. 2021, ApJL, 908, L6 Google Scholar
Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJL, 934, L7 Google Scholar
Rimoldini, L., Holl, B., Gavras, P., et al. 2023, A&A, 674, A14 Google Scholar
Ripepi, V., Catanzaro, G., Clementini, G., et al. 2022, A&A, 659, A167 Google Scholar
Ripepi, V., Catanzaro, G., Molinaro, R., et al. 2021, MNRAS, 508, 4047 CrossRefGoogle Scholar
Ripepi, V., Clementini, G., Molinaro, R., et al. 2023, A&A, 674, A17 Google Scholar
Sartoretti, P., Blomme, R., David, M., et al. 2022, Gaia DR3 documentation, European Space Agency; Gaia Data Processing and Analysis Consortium.Google Scholar
Zinn, J. C. 2021, AJ, 161, 214 Google Scholar