Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T07:34:33.005Z Has data issue: false hasContentIssue false

The Impact of Nuclear Star Formation on Gas Inflow to AGN

Published online by Cambridge University Press:  03 June 2010

R. I. Davies
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected]
E. Hicks
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected]
M. Schartmann
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected] Universitäts-Sternwarte München, Germany
R. Genzel
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected]
L. J. Tacconi
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected]
H. Engel
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected]
A. Burkert
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected] Universitäts-Sternwarte München, Germany
M. Krause
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Garching, Germany Email: [email protected] Universitäts-Sternwarte München, Germany
A. Sternberg
Affiliation:
School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
F. Mueller Sánchez
Affiliation:
Instituto de Astrofisica de Canarias, La Laguna, Tenerife, Spain
W. Maciejewski
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our adaptive optics observations of nearby AGN at spatial resolutions as small as 0.″085 show strong evidence for recent, but no longer active, nuclear star formation. We begin by describing observations that highlight two contrasting methods by which gas can flow into the central tens of parsecs. Gas accumulation in this region will inevitably lead to a starburst, and we discuss the evidence for such events. We then turn to the impact of stellar evolution on the further inflow of gas by combining a phenomenological approach with analytical modelling and hydrodynamic simulations. These complementary perspectives paint a picture in which all the processes are ultimately regulated by the mass accretion rate into the central hundred parsecs, and the ensuing starburst that occurs there. The resulting supernovae delay accretion by generating a starburst wind, which leaves behind a clumpy interstellar medium. This provides an ideal environment for slower stellar outflows to accrete inwards and form a dense turbulent disk on scales of a few parsecs. Such a scenario may resolve the discrepancy between the larger scale structure seen with adaptive optics and the small-scale structure seen with VLTI.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Best, P., Kauffmann, G., Heckman, T., Birnchmann, J., Charlot, S., Iverzić, Ž., & White, S. 2005, MNRAS, 362, 25CrossRefGoogle Scholar
Cuadra, J., Nayakshin, S., Springel, V., & Di Matteo, T. 2006, MNRAS, 366, 358CrossRefGoogle Scholar
Cuadra, J., Nayakshin, S., & Martins, F. 2008, MNRAS, 383, 458CrossRefGoogle Scholar
Davies, R., Tacconi, L., & Genzel, R. 2004a, ApJ, 602, 148CrossRefGoogle Scholar
Davies, R., Tacconi, L., & Genzel, R. 2004b, ApJ, 613, 781CrossRefGoogle Scholar
Davies, R., Mueller Sanchez, D., Genzel, R., Tacconi, L., Hicks, E., Friedrich, S., & Sternberg, A. 2007, ApJ, 671, 1388Google Scholar
Davies, R. 2008, New Astron. Revs., 52, 307CrossRefGoogle Scholar
Davies, R., Maciejewski, W., Hicks, E., Tacconi, L., Genzel, R., & Engel, H. 2009, ApJ, 702, 114CrossRefGoogle Scholar
Friedrich, S., Davies, R., Hicks, E., Engel, H., Mueller Sánchez, F., Genzel, R., & Tacconi, L. 2009, A&A, submittedGoogle Scholar
García–Burillo, S., Combes, F., Schinnerer, E., Boone, F., & Hunt, K. 2005 A&A, 441, 1011Google Scholar
García-Burillo, S., Combes, F., Usero, A., & Gracía-Carpio, J. 2007, New Astron. Revs., 51, 160Google Scholar
Hasinger, G., Miyaji, T., & Schmidt, M. 2005, A&A, 441, 417Google Scholar
Hao, L., et al. 2005, AJ, 129, 1795CrossRefGoogle Scholar
Hicks, E., Davies, R., Malkan, M., Genzel, R., Tacconi, L., Mueller Sánchez, F., & Sternberg, A. 2009, ApJ, 696, 448CrossRefGoogle Scholar
Ho, L. 2008, ARAA, 46, 475CrossRefGoogle Scholar
Jogee, S., Scoville, N., & Kenney, J. 2005, ApJ, 630, 837CrossRefGoogle Scholar
Jogee, S. 2006, Lecture Notes in Physics, 693, 143Google Scholar
Laurikainen, E., Salo, H., & Buta, R. 2004, ApJ, 607, 103Google Scholar
Martini, P., Regan, M., Mulchaey, J., & Pogge, R. 2003, ApJ, 589, 774CrossRefGoogle Scholar
Mueller Sánchez, F., Davies, R., Genzel, R., Tacconi, L., Eisenhauer, F., Hicks, E., Friedrich, S., & Sternberg, A. 2009, ApJ, 691, 749CrossRefGoogle Scholar
Prieto, A., Maciejewski, W., & Reunanen, J. 2005, AJ, 130, 1472CrossRefGoogle Scholar
Raban, D., Jaffe, W., Röttgering, H., Meisenheimer, K., & Tristram, K. 2009, MNRAS, 394, 1325CrossRefGoogle Scholar
Regan, M. & Teuben, P. 2004, ApJ, 600, 595Google Scholar
Riffel, R., Storchi-Bergmann, T., Winge, C., McGregor, P., Beck, T., & Schmitt, H. 2008, MNRAS, 385, 1129CrossRefGoogle Scholar
Riffel, R., Storchi-Bergmann, T., Dors, O., & Winge, C. 2009, MNRAS, 393, 783Google Scholar
Sakamoto, K., Okumura, S., Ishizuki, S., & Scoville, N. 1999, ApJ, 525, 691Google Scholar
Schartmann, M., Meisenheimer, K., Klahr, H., Camenzind, M., Wolf, S., & Henning, T. 2009, MNRAS, 393, 759CrossRefGoogle Scholar
Shlosman, I., Begelman, M., & Frank, J. 1990, Nature, 345, 679Google Scholar
Storchi-Bergmann, T., Nemmen, R., Spinelli, P., Eracleous, M., Wilson, A., Filippenko, A., & Livio, M. 2005, ApJ, 624, L13Google Scholar
Storchi-Bergmann, T., Dors, O., Riffel, R., Fathi, K., Axon, D., Robinson, A., Marconi, A., & Östlin, G. 2007, ApJ, 670, 959CrossRefGoogle Scholar
Storchi-Bergmann, T., Simões-Lopes, R., McGregor, P., Riffel, R., Beck, T., & Martini, P. 2009, MNRAS, in pressGoogle Scholar
Tristram, K., et al. 2007, A&A, 474, 837Google Scholar
Wada, K. 2004, in Coevolution of Black Holes and Galaxies, ed. Ho, L. C. (Cambridge: Cambridge University Press), p. 186Google Scholar
Wada, K., Papadopoulos, P., & Spaans, M. 2009, ApJ, 702, 63CrossRefGoogle Scholar