Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T19:47:58.876Z Has data issue: false hasContentIssue false

Identification of a Local Sample of Gamma-Ray Bursts Consistent with a Magnetar Giant Flare Origin

Published online by Cambridge University Press:  27 February 2023

Michela Negro
Affiliation:
University of Maryland, Baltimore County, Baltimore, MD 21250, USA NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA CRESST, NASA/GSFC, Greenbelt, MD 20771, US email: [email protected]
Eric Burns
Affiliation:
Louisiana State University: Baton Rouge, LA, US email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Triggered by the MGF detected from the Sculptor galaxy on April 2020, the study described in this proceeding reports the unambiguous identification of a distinct population of 4 local (< 5 Mpc) short GRBs, whose rise time and isotropic energy release are independently inconsistent with the larger short GRB population at >99.9% confidence. These properties, the host galaxies, and non-detection in gravitational waves all point to an extragalactic MGF origin. The inferred volumetric rates for events above 4 × 1044 erg of $$R{\rm{ = }}3.8_{ - 3.1}^{ + 4.0} \times {10^5}Gp{c^{ - 3}}y{r^{ - 1}}$$. These rates imply that some magnetars produce multiple MGFs, providing a source of repeating GRBs. The rates and host galaxies favor common core-collapse supernova as key progenitors of magnetars.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Ajello, M. et al. Fermi-LAT Collaboration. Nature Astronomy, vol 5, page 385, 2021.Google Scholar
Burns, E. et al., ApJL, 907(2):L28, 2021 CrossRefGoogle Scholar
Evans, W. et al., Astrophys. J., 237, L7, 1980.CrossRefGoogle Scholar
Hurley, K., Cline, T., Mazets, E., et al., Nature, 397, 41, 1999a.CrossRefGoogle Scholar
Hurley, K., Boggs, S., Smith, D., et al., Nature, 434, 1098, 2005.CrossRefGoogle Scholar
Kaspi, V. M. et al., ARA&A, 55:261-301, 2017.CrossRefGoogle Scholar
Li, W. and Chornock, R. et al., Mon. Not. R. Astron. Soc., 412, 14731507, 2011.CrossRefGoogle Scholar
Martinez-Castellanos, I., et al., 2021, (ApJ submitted), Pre-print: arXiv:2111.09209.Google Scholar
Mazets, E. P., Aptekar, R. L., Cline, T. L., et al., Astrophys. J., 680, 545, 2008.CrossRefGoogle Scholar
Ofek, E. O., Kulkarni, S., Nakar, E., et al., Astrophys J., 652, 507, 2006.CrossRefGoogle Scholar
Ofek, E. O. 2007, Astrophys. J., 659, 339 CrossRefGoogle Scholar
Popov, S. B., Stern, B., Mon. Not. R. Astron. Soc., 365, 885, 2006.CrossRefGoogle Scholar
Roberts, O. J. et al., Nature, 589(7841):207210, 2021.Google Scholar
Svinkin, D. et al., Nature, 589(7841): 211213, 2021.Google Scholar
Svinkin, D. et al., Mon. Not. R. Astron. Soc., 447, 1028, 2015.https://science.nasa.gov/astrophysics/programs/astrophysics-pioneers Google Scholar