Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T06:31:09.994Z Has data issue: false hasContentIssue false

Hydrogen cyanide polymers connect cosmochemistry and biochemistry

Published online by Cambridge University Press:  01 February 2008

Clifford N. Matthews
Affiliation:
University of Illinois, Chicago, ILUSA email: [email protected]
Robert D. Minard
Affiliation:
Penn State Astrobiology Research Center and Department of Chemistry, Penn State University, University Park, PA 16802USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To understand the origin of protein/nucleic acid based life as we know it on Earth, we must “follow” the nitrogen. Because of its unique hydrogen bonding characteristics, nitrogen is the key element in catalytic and/or informational proteins and nucleic acids essential to cell function and reproduction. We present evidence that HCN is the original source of prebiotic protein and nucleobase nitrogen. We also present chemically rational models supporting the radical hypothesis that the polymerization of HCN yields ab initio mundi prebiotic protein and polynucleobase macromolecules of sufficient size and complexity to allow the spontaneous generation of pre-RNA World biopolymers capable of catalysis and information transfer.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bar-Nun, A., Kleinfeld, I., & Ganor, E. 1988, Journal of Geophysical Research, [Atmospheres], 93, 8383.CrossRefGoogle Scholar
Bernstein, M. P., Sandford, S. A., & Allamandola, L. J. 1999, Sci. Am., 281, 4249Google Scholar
Ehrenfreund, P., Rasmussen, S., Cleaves, J. & Chen, L. 2006, Astrobiology, 6, 490.CrossRefGoogle Scholar
Ferris, J. P. & Orgel, L. E. 1966, J. Amer. Chem. Soc., 88, 1074.Google Scholar
Fomenkova, M. N. 1997 in From Stardust to Planetesimals, Ed. Pendleton, Y.J. and Tielens, A. G. G. M., Astronomical Society of the Pacific, San Francisco, 415.Google Scholar
Glaser, R., Hodgen, B., Farrelly, D., McKee, E. 2007, Astrobiology, 7, 455.Google Scholar
Imanaka, H. 2004, Laboratory Simulations of Titan's Organic Haze and Condensation Clouds (Ph.D. Thesis). University of Tokyo, Tokyo, Japan.Google Scholar
Israel, G. et al. 2005, Nature, 438, 796.Google Scholar
Kissel, J. & Krueger, F. R. 1987, Nature (London), 326, 755.Google Scholar
Mamajanov, I. & Herzfeld, J. 2008, submitted for publication.Google Scholar
Matthews, C. N. 1982, Origins of Life and Evolution of the Biospheres, 12, 281Google Scholar
Matthews, C. N. & Ludicky, R. A. 1986, Proceedings 20th ESLAB Symposium on the Exploration of Halley's Comet, ESA SP-250, 273.Google Scholar
Matthews, C. N. & Minard, R. D. 2006, Faraday Discuss., 133, 393401 and subsequent discussion.Google Scholar
Matthews, C. N. & Moser, R. E. 1966, Proc. National Acad. of Science. USA, 56, 1087.Google Scholar
Matthews, C. N. & Moser, R. E. 1967, Nature, 215, 1230.Google Scholar
Matthews, C., Nelson, J., Varma, P., & Minard, R. 1977, Science, 198, 622Google Scholar
Minard, R., Yang, W., Varma, P., Nelson, J., & Matthews, C. 1975, Science, 190, 387.Google Scholar
Miyakawa, S., Cleaves, H. J., Miller, S. 2002, Origins of Life and Evolution of the Biospheres, 32, 209.Google Scholar
Oró, J. 1961, Arc. Biochem. and Biophys., 94, 217227Google Scholar
Oró, J. & Kamat, S. S. 1961, Nature, 190, 442.Google Scholar
Platts, S. N. 2004, http://www.pahworld.com accessed 3/31/2008.Google Scholar
Proust, J. L. 1808, The Philosophical Magazine, Tilloch, A., Ed., 32, 336.Google Scholar
Sandford, S. A. et al. 2006, Science, 314, 1720.Google Scholar
Scattergood, T. W., Lau, E. Y., Stone, B. M. 1992, Icarus, 99, 98.Google Scholar
Thaddeus, P. 2006, Phil. Trans. R. Soc. B, 1681Google Scholar
Waite, J. H., Young, D. T., Cravens, T. E., Coates, A. J., Crary, F. J., Magee, B., & Westlake, J. 2007 Science, 316, 870Google Scholar