Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T22:38:31.883Z Has data issue: false hasContentIssue false

Hydrodynamic Simulations and Time-dependent Photoionization Modeling of Starburst-driven Superwinds

Published online by Cambridge University Press:  20 January 2023

A. Danehkar
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA email: [email protected]
M. S. Oey
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA email: [email protected]
W. J. Gray
Affiliation:
Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermal energies deposited by OB stellar clusters in starburst galaxies lead to the formation of galactic superwinds. Multi-wavelength observations of starburst-driven superwinds pointed at complex thermal and ionization structures which cannot adequately be explained by simple adiabatic assumptions. In this study, we perform hydrodynamic simulations of a fluid model coupled to radiative cooling functions, and generate time-dependent non-equilibrium photoionization models to predict physical conditions and ionization structures of superwinds using the maihem atomic and cooling package built on the program flash. Time-dependent ionization states and physical conditions produced by our simulations are used to calculate the emission lines of superwinds for various parameters, which allow us to explore implications of non-equilibrium ionization for starburst regions with potential radiative cooling.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Badnell, N. R., 2006, ApJS, 167, 334 CrossRefGoogle Scholar
Berg, D. A., Chisholm, J., Erb, D. K., Pogge, R., et al., 2019a, ApJ, 878, L3 CrossRefGoogle Scholar
Berg, D. A., Erb, D. K., Henry, R. B. C., et al., 2019b, ApJ, 874, 93 Google Scholar
Chevalier, R. A., Clegg, A. W., 1985, Nature, 317, 44 CrossRefGoogle Scholar
Chisholm, J., Bordoloi, R., Rigby, J. R., Bayliss, M., 2018, MNRAS, 474, 1688 CrossRefGoogle Scholar
Danehkar, A., Oey, M. S., Gray, W. J., 2021, ApJ, 921, 91 CrossRefGoogle Scholar
Danehkar, A., Oey, M. S., Gray, W. J., 2022, ApJ, 937, 68 CrossRefGoogle Scholar
de Avillez, M. A., Breitschwerdt, D., 2012, ApJ, 761, L19 CrossRefGoogle Scholar
Dopita, M. A., Sutherland, R. S., 2003, Astrophysics of the Diffuse Universe. Springer: Berlin Google Scholar
Ekström, S. et al., 2012, A&A, 537, A146 Google Scholar
Ferland, G. J. et al., 2017, RMxAA, 53, 385 Google Scholar
Ferland, G. J. et al., 2013, RMxAA, 49, 137 Google Scholar
Fryxell, B. et al., 2000, ApJS, 131, 273 CrossRefGoogle Scholar
Georgy, C., Ekström, S., Meynet, G., Massey, P., et al., 2012, A&A, 542, A29 Google Scholar
Gnat, O., Ferland, G. J., 2012, ApJS, 199, 20 Google Scholar
Gnat, O., Sternberg, A., 2007, ApJS, 168, 213 CrossRefGoogle Scholar
Gray, W. J., Oey, M. S., Silich, S., Scannapieco, E., 2019a, ApJ, 887, 161 Google Scholar
Gray, W. J., Scannapieco, E., 2016, ApJ, 818, 198 CrossRefGoogle Scholar
Gray, W. J., Scannapieco, E., Kasen, D., 2015, ApJ, 801, 107 CrossRefGoogle Scholar
Gray, W. J., Scannapieco, E., Lehnert, M. D., 2019b, ApJ, 875, 110 Google Scholar
Grimes, J. P. et al., 2007, ApJ, 668, 891 CrossRefGoogle Scholar
Hayes, M., Melinder, J., Östlin, G., Scarlata, C., et al., 2016, ApJ, 828, 49 Google Scholar
Heckman, T. M., Armus, L., Miley, G. K., 1990, ApJS, 74, 833 CrossRefGoogle Scholar
Jaskot, A. E., Oey, M. S., Scarlata, C., Dowd, T., 2017, ApJ, 851, L9 CrossRefGoogle Scholar
Leitherer, C., Ekström, S., Meynet, G., Schaerer, D., et al., 2014, ApJS, 212, 14 CrossRefGoogle Scholar
Levesque, E. M., Leitherer, C., Ekstrom, S., Meynet, G., Schaerer, D., 2012, ApJ, 751, 67 CrossRefGoogle Scholar
Mewe, R., 1999, in X-ray spectroscopy in Astrophysics, van Paradijs J., Bleeker J. A., eds., Lectrure Notes in Physics, Springer: BerlinGoogle Scholar
Oey, M. S., Herrera, C. N., Silich, S., Reiter, M., et al., 2017, ApJ, 849, L1 CrossRefGoogle Scholar
Oppenheimer, B. D., Schaye, J., 2013, MNRAS, 434, 1043 CrossRefGoogle Scholar
Senchyna, P. et al., 2017, MNRAS, 472, 2608 Google Scholar
Silich, S., Tenorio-Tagle, G., Rodrguez-González, A., 2004, ApJ, 610, 226 CrossRefGoogle Scholar
Tenorio-Tagle, G., Silich, S., Rodrguez-González, A., Muñoz-Tuñón, C., 2005, ApJ, 620, 217 CrossRefGoogle Scholar
Turner, J. L., Consiglio, S. M., Beck, S. C., Goss, W. M., et al., 2017, ApJ, 846, 73 CrossRefGoogle Scholar
Vasiliev, E. O., 2011, MNRAS, 414, 3145 CrossRefGoogle Scholar
Verner, D. A., Ferland, G. J., Korista, K. T., Yakovlev, D. G., 1996, ApJ, 465, 487 CrossRefGoogle Scholar
Verner, D. A., Yakovlev, D. G., 1995, A&AS, 109, 125 Google Scholar
Voronov, G. S., 1997, Atom. Data Nucl. Data Tabl., 65, 1CrossRefGoogle Scholar
Weaver, R., McCray, R., Castor, J., Shapiro, P., Moore, R., 1977, ApJ, 218, 377 CrossRefGoogle Scholar