Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T19:42:11.839Z Has data issue: false hasContentIssue false

Hydrodynamic Processes in Massive Stars

Published online by Cambridge University Press:  01 April 2008

Casey A. Meakin*
Affiliation:
Astronomy Department, University of Arizona, Tucson, AZ 85721, USA Astronomy and Astrophysics Center, University of Chicago, Chicago, IL 60637, USA Joint Institute for Nuclear Astrophysics, University of Chicago, Chicago, IL, 60637, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The hydrodynamic processes operating within stellar interiors are far richer than represented by the best stellar evolution model available. Although it is now widely understood, through astrophysical simulation and relevant terrestrial experiment, that many of the basic assumptions which underlie our treatments of stellar evolution are flawed, we lack a suitable, comprehensive replacement. This is due to a deficiency in our fundamental understanding of the transport and mixing properties of a turbulent, reactive, magnetized plasma; a deficiency in knowledge which stems from the richness and variety of solutions which characterize the inherently non-linear set of governing equations. The exponential increase in availability of computing resources, however, is ushering in a new era of understanding complex hydrodynamic flows; and although this field is still in its formative stages, the sophistication already achieved is leading to a dramatic paradigm shift in how we model astrophysical fluid dynamics. We highlight here some recent results from a series of multi-dimensional stellar interior calculations which are part of a program designed to improve our one-dimensional treatment of massive star evolution and stellar evolution in general.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Almgren, A. S., Bell, J. B., Rendleman, C. A., & Zingale, M. 2006, ApJ, 637, 922CrossRefGoogle Scholar
Arnett, D. 1996, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present, by Arnett, D.. Princeton: Princeton University Press, 1996CrossRefGoogle Scholar
Arnett, D., Meakin, C. A., & Young, P. A., 2008, ApJ, submittedGoogle Scholar
Benzi, R., Biferale, L., Fisher, R., Kadanoff, L., Lamb, D., & Toschi, F. 2008, Physical Review Letters, 100, 234503CrossRefGoogle Scholar
Boris, J., 2007, in Implicit Large Eddy Simulations, ed. Grinstein, F. F., Margolin, L. G., & Rider, W. J., Cambridge University Press, p. 9CrossRefGoogle Scholar
Colella, P. & Woodward, P. R. 1984, Journal of Computational Physics, 54, 174CrossRefGoogle Scholar
Fernando, H. J. S. 1991, Annual Review of Fluid Mechanics, 23, 455CrossRefGoogle Scholar
Fernando, H. J. S. & Hunt, J. C. R. 1997, Journal of Fluid Mechanics, 347, 197CrossRefGoogle Scholar
Gough, D. O. 1969, Journal of Atmospheric Sciences, 26, 4482.0.CO;2>CrossRefGoogle Scholar
Gottbrath, C, Bailin, J, Meakin, C. A., Thompson, T, & Charfman, J. J. 1999, ArXiv Astrophysics e-prints, arXiv:astro-ph/9912202Google Scholar
Kippenhahn, R., & Weigert, A. 1990, Stellar Structure and Evolution, XVI, 468 pp. 192 figs.. Springer-Verlag Berlin Heidelberg New York. Also A stronomy and Astrophysics Library,CrossRefGoogle Scholar
Kolmogorov, A. N., 1941, Dokl. Akad. Nauk SSSR, 30, 299Google Scholar
Kolmogorov, A. N. 1962, J. Fluid Mech., 13, 82CrossRefGoogle Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416CrossRefGoogle Scholar
Kuhfuss, R. 1986, A&A, 160, 116Google Scholar
Lin, D. J., Bayliss, A., & Taam, R. E. 2006, ApJ, 653, 545CrossRefGoogle Scholar
McGrath, J. L., Fernando, H. J. S., & Hunt, J. C. R. 1997, Journal of Fluid Mechanics, 347, 235CrossRefGoogle Scholar
Meakin, C. A. 2006, Ph.D. Thesis, University of ArizonaGoogle Scholar
Meakin, C. A. & Arnett, D. 2007c, ApJ, 667, 448CrossRefGoogle Scholar
Meakin, C. A. & Arnett, D. 2007b, ApJ, 665, 690CrossRefGoogle Scholar
Meakin, C. A. & Arnett, D. 2007a, IAU Symposium, 239, 296Google Scholar
Meakin, C. A. & Arnett, D. 2006, ApJL, 637, L53CrossRefGoogle Scholar
Pope, S. B. 2000, Turbulent Flows, by Pope, Stephen B., pp. 806. ISBN 0521591252. Cambridge, UK: Cambridge University Press, September 2000CrossRefGoogle Scholar
Schneider, T., Botta, N., Geratz, K. J., & Klein, R. 1999, Journal of Computational Physics, 155, 248CrossRefGoogle Scholar
Stellingwerf, R. F. 1982, ApJ, 262, 330CrossRefGoogle Scholar
Turner, J. A. 2007, LANL Rep. LA-UR-07-1037 (Los Alamos: LANL)Google Scholar
Zahn, J.-P. 1991, A&A, 252, 179Google Scholar