Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-01T22:46:40.044Z Has data issue: false hasContentIssue false

Hubble constant, lensing, and time delay in Te Ve S

Published online by Cambridge University Press:  26 February 2013

Yong Tian
Affiliation:
Department of Physics, National Central University, Jhongli, Taiwan320 email: [email protected]
Chung-Ming Ko
Affiliation:
Institute of Astronomy, Department of Physics and Center for Complex Systems, National Central University, Jhongli, Taiwan320 email: [email protected]
Mu-Chen Chiu
Affiliation:
Scottish University Physics Alliance, Institute for Astronomy, the Royal Observatory, University of Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Hubble constant can be determined from the time delay of gravitationally lensed systems. We adopt Te Ve S as the relativistic version of Modified Newtonian Dynamics to study gravitational lensing phenomena and evaluate the Hubble constant from the derived time-delay formula. We test our method on observed quasar lensing published in the literature. Three candidates are suitable for our study, HE 2149-2745, FBQ J0951+2635, and SBS 0909+532.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Angus, G. W. & McGaugh, S. S. 2008, MNRAS, 383, 417Google Scholar
Bekenstein, J. D. 2004, Phys. Rev. D, 70, 083509Google Scholar
Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. 2006, ApJ, 648, L109Google Scholar
Chiu, M. C., Ko, C. M., & Tian, Y. 2006, ApJ, 636, 565CrossRefGoogle Scholar
Chiu, M. C., Ko, C. M., Tian, Y., & Zhao, H. S. 2011, Phys. Rev. D, 83, 063523Google Scholar
Ferreras, I., Sakellariadou, M., & Yusaf, M. F. 2008, Phys. Rev. Lett., 100, 031302Google Scholar
Hernquist, L. 1990, ApJ, 356, 359Google Scholar
McGaugh, S. S. 2011, Phys. Rev. Lett., 106, 121303Google Scholar
Milgrom, M. 1983, ApJ, 270, 365Google Scholar
Milgrom, M. 2009, Phys. Rev. D, 80, 123536CrossRefGoogle Scholar
Paraficz, D. & Hjorth, J. 2010, AJ, 712, 1378CrossRefGoogle Scholar
Refsdal, S. 1964, MNRAS, 128, 307CrossRefGoogle Scholar
Riess, A. G., & Macri, L., Li, W., et al. 2009, ApJS, 183, 109Google Scholar
Sanders, R. H. & McGaugh, S. S. 2002, ARA&A, 40, 263Google Scholar
Skordis, C., Mota, D. F., Ferreira, P. G., & Boehm, C. 2006, Phys. Rev. Lett., 96, 011301Google Scholar
Tian, Y., Ko, C. M., & Chiu, M. C. 2012, arXiv:1204.6359v1Google Scholar
Tully, R. B. & Fisher, J. R. 1977, A&A, 54, 661Google Scholar
Witt, H. J., Mao, S., & Keeton, C. R. 2000, ApJ, 544, 98Google Scholar
Zhao, H. S., Bacon, D. J., Taylor, A. N., & Horne, K., 2006, MNRAS, 368, 171Google Scholar