Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T00:37:59.782Z Has data issue: false hasContentIssue false

How well can we identify pseudobulges?

Published online by Cambridge University Press:  05 March 2015

Alister Graham*
Affiliation:
Swinburne University of Technology Australia, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Since the discovery of rotating galaxy bulges (e.g. Pease 1918; Babcock 1938, 1939), especially in the 1970s (e.g. Rubin, Ford & Kumar 1973; Pellet 1976; Bertola & Capaccioli 1977; Peterson 1978; Mebold et al. 1979; Kormendy & Illingworth 1979), coupled with early computer simulations of disks which formed rotating, exponential-like “pseudobulges” (e.g. Bardeen 1975; Hohl 1975, and references therein), a number of often over-looked problems pertaining to the identification of real “pseudobulges” have arisen. Drawing on my recent review article of disk galaxy structure and modern scaling laws (Graham 2012), some of these important issues are presented. Topics include: classical spheroids with exponential light distributions; curved but continuous scaling relations involving the ‘effective’ structural parameters; the old age of most bulge stars (e.g. Thomas & Davies 2006; MacArthur et al. 2009); that most disk galaxies have bulge-to-disk flux ratios < 1/3 (Graham & Worley 2008); rotation in simulated merger remnants (e.g. Bekki 2010; Keselman & Nusser 2012) plus many other frustrating yet interesting reasons why rotation may not be a definitive signature of bulges built via secular processes (e.g. Babusiaux et al. 2010; Williams et al. 2010, Qu et al. 2011; Saha et al. 2012)

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Babcock, H. W. 1938, PASP, 50, 174CrossRefGoogle Scholar
Babcock, H. W. 1939, Lick Observatory Bulletin, 19, 41Google Scholar
Babusiaux, C., et al. 2010, A&A, 519, A77Google Scholar
Bekki, K. 2010, MNRAS, 401, L58Google Scholar
Bardeen, J. M. 1975, IAU Symp., 69, 297Google Scholar
Bertola, F. & Capaccioli, M. 1977, ApJ, 211, 697Google Scholar
Graham, A. W., Worley, C. C. 2008, MNRAS, 388, 1708CrossRefGoogle Scholar
Graham, A. W. 2012, in Planets, Stars, and Stellar Systems, Vol. 6, Extragalactic Astronomy and Cosmology, ed. Keel, W. C. (New York: Springer-Verlag), in press (arXiv:1108.0997)Google Scholar
Hohl, F. 1975, IAU Symp., 69, 349Google Scholar
Keselman, J. A. & Nusser, A. 2012, MNRAS, 424, 1232Google Scholar
Kormendy, J. & Illingworth, G. 1979, Photometry, Kinematics and Dynamics of Galaxies, 195Google Scholar
MacArthur, L. A., González, J. J., & Courteau, S. 2009, MNRAS, 395, 28Google Scholar
Mebold, U., Goss, W. M., Siegman, B., van Woerden, H., & Hawarden, T. G. 1979, A&A, 74, 100Google Scholar
Pease, F. G. 1918, Proc. Nat. Acad. Sci., 4, 21Google Scholar
Pellet, A. 1976, A&A, 50, 421Google Scholar
Peterson, C. J. 1978, ApJ, 221, 80Google Scholar
Qu, Y., Di Matteo, P., Lehnert, M. D., & van Driel, W. 2011, A&A, 530, A10Google Scholar
Rubin, V. C., Ford, W. K., Krishna, Kumar C. 1973, ApJ, 181, 61Google Scholar
Saha, K., Martinez-Valpuesta, I., & Gerhard, O. 2012, MNRAS, 421, 333Google Scholar
Thomas, D. & Davies, R. L. 2006, MNRAS, 366, 510Google Scholar
Williams, M. J., et al. 2010, MNRAS, 414, 2163CrossRefGoogle Scholar