No CrossRef data available.
Article contents
How has the solar wind evolved to become what it is today?
Published online by Cambridge University Press: 28 September 2023
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this contribution, I briefly review the long-term evolution of the solar wind (its mass-loss rate), including the evolution of observed properties that are intimately linked to the solar wind (rotation, magnetism and activity). I also briefly discuss implications of the evolution of the solar wind on the evolving Earth. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.
- Type
- Contributed Paper
- Information
- Proceedings of the International Astronomical Union , Volume 18 , Symposium S372: The Era of Multi-Messenger Solar Physics , August 2022 , pp. 103 - 109
- Creative Commons
- This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits noncommercial re-use, distribution, and reproduction in any medium, provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union
References
Carolan, S., Vidotto, A. A., Plavchan, P., D’Angelo, C. V., & Hazra, G. 2020 a, MNRAS, 498, L53
CrossRefGoogle Scholar
Carolan, S., Vidotto, A. A., Villarreal D’Angelo, C., & Hazra, G. 2020 b, MNRAS, 500, 3382
CrossRefGoogle Scholar
Debrecht, A., Carroll-Nellenback, J., Frank, A., et al. 2019, MNRAS, 483, 1481
CrossRefGoogle Scholar
Donati, J. & Landstreet, J. D. 2009, Annual Review of Astronomy & Astrophysics, 47, 333
CrossRefGoogle Scholar
Finley, A. J., Hewitt, A. L., Matt, S. P., et al. 2019, ApJ Letters, 885, L30
CrossRefGoogle Scholar
Fraschetti, F., Drake, J. J., Alvarado-Gomez, J. D., et al. 2019, ApJ, 874, 21
CrossRefGoogle Scholar
Gaidos, E. J., Guedel, M., & Blake, G. A. 2000, Geophysical Research Letters, 27, 501
CrossRefGoogle Scholar
Hazra, G., Vidotto, A. A., Carolan, S., Villarreal D’Angelo, C., & Manchester, W. 2022, MNRAS, 509, 5858
CrossRefGoogle Scholar
Herbst, K., Scherer, K., Ferreira, S. E. S., et al. 2020, ApJ Letters, 897, L27
CrossRefGoogle Scholar
Irwin, J. & Bouvier, J. 2009, in IAU Symposium, Vol. 258, IAU Symposium, ed. Mamajek, E. E., Soderblom, D. R., & Wyse, R. F. G., 363–374CrossRefGoogle Scholar
Kavanagh, R. D., Vidotto, A. A., O Fionnagain, D., et al. 2019, MNRAS, 485, 4529
CrossRefGoogle Scholar
Kislyakova, K. G., Holmstrom, M., Lammer, H., Odert, P., & Khodachenko, M. L. 2014, Science, 346, 981
CrossRefGoogle Scholar
Kubyshkina, D., Vidotto, A. A., Villarreal D’Angelo, C., et al. 2022, MNRAS, 510, 2111
CrossRefGoogle Scholar
Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., et al. 2007, Space Science Review, 129, 207
Google Scholar
Matt, S. P., Brun, A. S., Baraffe, I., Bouvier, J., & Chabrier, G. 2015, ApJ Letters, 799, L23
CrossRefGoogle Scholar
McCann, J., Murray-Clay, R. A., Kratter, K., & Krumholz, M. R. 2019, ApJ, 873, 89
CrossRefGoogle Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., et al. 2008, Geophysical Research Letters, 35, 18103
Google Scholar
Mesquita, A. L., Rodgers-Lee, D., Vidotto, A. A., Atri, D., & Wood, B. E. 2022 a, MNRAS, 509, 2091
Google Scholar
Mesquita, A. L., Rodgers-Lee, D., Vidotto, A. A., & Kavanagh, R. D. 2022 b, MNRAS, 515, 1218
CrossRefGoogle Scholar
Pezzotti, C., Attia, O., Eggenberger, P., Buldgen, G., & Bourrier, V. 2021, A&A, 654, L5
Google Scholar
Rodgers-Lee, D., Taylor, A. M., Vidotto, A. A., & Downes, T. P. 2021 a, MNRAS, 504, 1519
CrossRefGoogle Scholar
Rodgers-Lee, D., Vidotto, A. A., Taylor, A. M., Rimmer, P. B., & Downes, T. P. 2020, MNRAS, 499, 2124
CrossRefGoogle Scholar
Spada, F., Lanzafame, A. C., Lanza, A. F., Messina, S., & Collier Cameron, A. 2011, MNRAS, 416, 447
Google Scholar
Vedantham, H. K., Callingham, J. R., Shimwell, T. W., et al. 2020, Nature Astronomy, 4, 577
CrossRefGoogle Scholar
Vidotto, A. A., Fares, R., Jardine, M., Moutou, C., & Donati, J.-F. 2015, MNRAS, 449, 4117
CrossRefGoogle Scholar
Vidotto, A. A., Lehmann, L. T., Jardine, M., & Pevtsov, A. A. 2018, MNRAS, 480, 477
CrossRefGoogle Scholar
Villarreal D’Angelo, C., Vidotto, A. A., Esquivel, A., Hazra, G., & Youngblood, A. 2021, MNRAS, 501, 4383
CrossRefGoogle Scholar
Wood, B. E. 2018, in Journal of Physics Conference Series, Vol. 1100, Journal of Physics Conference Series, 012028CrossRefGoogle Scholar
Wood, B. E., Linsky, J. L., Mueller, H., & Zank, G. P. 2001, ApJ Letters, 547, L49
CrossRefGoogle Scholar
Wood, B. E., Mueller, H.-R., Redfield, S., & Edelman, E. 2014, ApJ Letters, 781, L33
CrossRefGoogle Scholar
Wood, B. E., Mueller, H.-R., Zank, G. P., & Linsky, J. L. 2002, ApJ, 574, 412
CrossRefGoogle Scholar
Wood, B. E., Mueller, H.-R., Zank, G. P., Linsky, J. L., & Redfield, S. 2005, ApJ Letters, 628, L143
CrossRefGoogle Scholar
Wright, N. J., Drake, J. J., Mamajek, E. E., & Henry, G. W. 2011, ApJ, 743, 48
CrossRefGoogle Scholar
You have
Access
Open access